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Abstract 

Within the context of the knowledge-based economy a systemic perspective on innovation, as the 

salient feature of economic development, is increasingly necessary and is of strategic policy value 

(Bartels et al., 2012).  The National System of Innovation (NSI) of a country is vital for accelerating 

competitiveness and enhancing economic performance (Bartels and Voss, 2005)  This is crucial for 

developing economies wishing to catch up with advanced industrialised countries (Arocena and 

Sutz, 2000).  Innovation and NSI previously perceived linearly is now considered as a systemic 

network and this view yields much improved policy craft (Balzat, 2002).  In order to allocate 

limited resources efficaciously through targeted policy, mapping, measuring and thereby 

managing the interactions of the core Actors and barriers to innovation within the NSI is 

necessary (Bartels et al., 2009).  This paper examines the NSI through Structural Equation 

Modelling (SEM) using empirical data on the Ghana NSI (GNSI).  The theoretical approach used to 

model GNSI is Systems of Innovation (SI) specifically the ‘Triple Helix’ (TH) (Leydesdorff and 

Etzkowitz, 1998) and its extension to the ‘Triple Helix’ Type 4 (TH4) (Bartels and Koria, 2012; 

Koria et al., 2014).  This extension articulates NSI core actors as: Government, Medium- and High-

Technology Industries (MHTI)6, Knowledge-based Institutions (KBIs), and Arbitrageurs7 operating 

in a medium of diffused Information and Communication Technology (ICT).  The approach herein 

encapsulates the concurrent application of a single Data Acquisition Survey Instrument (DASI) to 

the four core Actors in the NSI.  We find that first that the construct GNSI Efficacity is determined 

by Actor Connectedness but not by Barriers to Innovation.  Secondly, we find that GNSI Efficacity 

is measureable by Factors that influence Incentives, Innovation Capacity, and Standards.  Thirdly, 

Actor Connectedness is measureable by Factors that influence Actor Intra- and Inter-linkages.  

Fourthly, Barriers to Innovation are measureable by Factors that influence ICT 

Capability/Capacity, Markets, Fiscal Policy, and Organisational Risks. 
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1. Introduction 

This paper analyses the National System of Innovation (NSI) through Exploratory Factor Analysis 

(EFA) and Structural Equation Modelling (SEM), using empirical data on the Ghana NSI (GNSI), 

regarding mapping and measuring the NSI for policy insights.  This enables the formulation of 

coherent, evidence-based science, technology and innovation policy.  It presents a four-

dimensional ICT-intense methodology for mapping, measuring and hence monitoring and 

managing NSI (Koria and Koseigi, 2011; Koria et al., 2012).  Our methodology takes departure 

from Leydesdorff and Etzkowitz (1996) Triple Helix (TH) framework which we elaborate as a 

Triple Helix Type 4 (TH4) Model. 

 

First, our approach incorporates specifically the nucleus of the NSI comprising four core Actors 

[Government (GOV), Industry (specifically Medium- and High-technology Industries (MHTI)), 

Knowledge-based Institutions (KBIs), Arbitrageurs (ARBs)].  Secondly, it articulates the 

concurrent application of a single Data Acquisition Survey Instrument (DASI) to Respondents from 

the four core Actors in the NSI8.  Thirdly, it reflects the four phases of innovation policy9 in which a 

significant part is played by Arbitrageurs [Knowledge-brokers (KBs), Financial Institutions (FIs) 

and Venture Capital (VC)] (Hargadon, 1998; Baygan and Freudenberg, 2000; Zook, 2003; Howells, 

2006; Samila and Sorenson, 2010.).  Identifying the dynamic nucleus of the NSI as the Intra- and 

Inter-relationships of the four Actors advances the TH of Etzkowitz and Leydesdorff (2000), which 

does not traditionally feature Arbitrageurs as a separate Actor, as a TH4 embedded within an 

environment of diffused information communications technology (ICT) (Koria et al., 2014). 

 

Innovation is the engine of capitalism and National Systems of Innovation or National Innovation 

Systems (NSI or NIS)10 are vital to long-term economic growth and competitiveness (Furman et al., 

2002; Furman and Hayes, 2004); and the effectiveness and efficiency (encapsulated by efficacity) 

of NSI is increasingly of strategic policy concern for advanced industrialised, as well as developing, 

countries (Groenewegen and van der Steen, 2006; Taskin and Zaim, 1997; Aghion et al., 2012; 

Samara et al., 2012; Ushakov, 2012).  This concern is emphasised by the innovation divide (Sachs, 

2003) and the ever-widening ‘digital divide’ or ‘digital inequality’ (DiMaggio and Hargittai, 2001; 

White et al., 2011).  The first formal conceptualisation of NSI is attributable to Adam Smith in his 

1776 analysis of “knowledge creation in relation to directly productive activities but also 

specialised services of scientists” (Lundvall et al., 2002. pp. 5).  The more modern 

conceptualisation is by List.  Freeman (1995, p. 5) indicates that “Friedrich List's conception of 

‘The National System of Political Economy’ (1841), … might … have been called ‘The National 

                                                 
8 Actors and Respondents are used interchangeably in the Paper. 
9 Phase 1 - the government directly intervenes in business sector R&D and innovation.  Phase 2 - involves strengthening of targeted business 
sectors.  Phase 3 - the targeting of VC and rapid growth of R&D and innovation activities are priorities.  Phase 4 - the emphasis shifts to 
restructuring and further targeting of specific sectors while addressing specific system and market failures (Avnimelech and Teubal, 2006). 
10 These two phrases are consistently present in text and citations over time within the literature (see Bartels et al., 2012; Munk and Vintergaard, 
2004; Arocena and Sutz, 2000b; Rockefeller Foundation, 2003; OECD, 2002, 1999; Lundvall, 1992, 1995, 2007; Nelson, R. R.,1993; Nelson, E. R., 
(ed.) 1963, for example).  Although interchangeable, we prefer to use the term National System(s) of Innovation.  The semantic difference is 
important – our preference places emphasis on the system(s) of innovation manifest at the national level of economic policy co-ordination and 
organisation. 
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System of Innovation’.  The main concern of List was with the problem of Germany overtaking 

England and, for underdeveloped countries (as Germany then was in relation to England), he 

advocated not only protection of infant industries but a broad range of policies designed to 

accelerate, or to make possible, industrialization and economic growth.  Most of these policies 

were concerned with learning about new technology and applying it.” 

 

We map and measure the NSI by applying simultaneously a singular DASI to the nucleus of Actors 

and then subject the data to EFA and SEM.  Our TH4 approach features a distinctive characteristic 

which is absent from the traditional Triple Helix model, defined by The Institute for Triple Helix 

Innovation, as “Academia, government, and industry constitute the three helices that engage in 

triple helix innovation.” (The Institute for Triple Helix Innovation)11.  We argue firstly that the 

centrality of Arbitrageurs to innovation, in the crucial role of providing funds, links, 

intermediation, knowledge resources and technical knowledge, is indispensable and hence they 

must be specifically included in the nucleus of the NSI (Stern et al., 2000; Gaba and Bhattacharya, 

2011; Delgado et al., 2012;) as, according to Kahn et al. (2014, p. 2) “The financing of innovation 

has been identified as an important structural bottleneck that has yet to be solved.  Coping with 

this challenge involves considering both the role of the state and public organisations and the role 

of private financial institutions.”  Secondly we argue, according to the diffusion of innovation 

paradigm (Rogers, 2003), that it is MHTI (ISIC Rev.3), comprising innovators, early adopters and 

the early majority, which embody the requisite economies of scale and scope, as well as the 

economically significant capability and capacity to innovate (even though innovation takes place 

in Low-tech industries)12.  Furthermore, MHTI represent a disproportionately high percentage of 

GDP contribution and, in developing countries, are much more ICT-connected than Low-tech 

industry.  Thirdly, we aver that diffused ICT is crucially important for intensifying the Intra- and 

Inter-relationships of, and facilitating the flow of knowledge and resources between, NSI Actors 

(Hilbert et al., 2010; Koria et al., 2012; Bartels and Koria, 201413). 

 

This paper attempts to assist in filling the empirical and measurement gap in the literature (Smith, 

2005; Adams et al., 2006), and concentrates on the systemic aspect of NSI rather than on a single 

aspect of the innovation process in firms, as a large part of the current empirical work does (Stock 

et al., 2002).  To our knowledge most studies focus on an industry level analysis (Filippetti and 

Archibugi 2011; Chaminade et al., 2012; Adams et al., 2013), while this paper analyses the 

relationship between the Actors; Government, Knowledge Based Institutions, Business 

Enterprises and Arbitrageurs. 

 

The rest of the paper is organised as follows: Section 2 — Literature Review — examines the 

seminal literature, elaborates nuances in the NSI conceptualisation while highlighting 
                                                 
11 Taxonomy of Triple Helix Innovation, The Institute for Triple Helix Innovation, University of Hawai’i, www.triplehelixinstitute.org 
12 This is not to deny innovation in services (Hipp et al., 2000; Preissl, 2000; Commission of the European Communities, 2007) however this is 
beyond the scope of this paper. 
13 Forthcoming in African Journal of Science, Technology, Innovation and Development. 
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measurement challenges.  Section 3 — Modelling — presents the SEM and the hypotheses.  Section 

4 — Methodology — elucidates our methodological approach for mapping and measuring NSI 

using innovation and innovativeness variables with respect to EFA and SEM.  Section 5 — EFA 

Analysis and Results — presents the EFA analytics.  Section 6 — SEM Analysis and Results — 

presents the approach to the SEM analytics and presents the results of modelling and model 

respecification.  Section 7 — Findings and Discussion — illustrates the results from the GNSI in 

terms of the modelled relationships of NSI Actors.  Section 8 — Conclusions — presents the 

overall conclusions and issues for further research. 

 

2. Literature Review 

The literature on innovation and NSI is extensively developed with a provenance in the works of 

List (1841) in terms of the national system of political economy; Marshall (1920) in spatial terms 

of industrial districts; and Schumpeter (1935), Solow (1957), Veblen (1906), Arrow (1962), 

Abramovitz (1986), and Romer (1990, 1994) in terms of the role of science and technical change 

(i.e. innovation) in economic growth (Ahlstrom, 2010). 

 

The evolution of the more recent conceptualisation of NSI, since its introduction in the early 1980s 

with a focus on long term investment and economic development (Freeman 2004), has 

increasingly recognised the role of investments in organisational capital and their improvement as 

the key for advancing economic development.  Given the socio-technical nature and systemic 

properties of innovation (Geels, 2004; Fagerberg, 2005; Fagerberg and Srholec, 2008) the concept 

of the NSI is best appreciated as one taxon, arguably the central one, among several within the 

broader notion of Systems of Innovation (SI) (Edquist, 1997, 2005a, 2005b).  Even in the earliest 

stages the literature accepted the complex adaptive and eco-systemic nature of NSI and the 

importance of linkages within, and between, actors and assets in science, technology, trade and 

industry (Freeman 2004) enabling resource transactions (exchange functions in human, physical 

and organisational capital) and resource transformations (functions in innovativeness) in the 

economy. 

 

It is increasingly recognised that the effectiveness and efficiency (encapsulated by efficacity) of 

NSI is heavily influenced significantly by the density (number of linkages), directionality (balance 

of uni-, bi-directional linkages), distribution (spread of linkages), and symmetry/asymmetry of 

Intra- and Inter-organisational relationships within, and between, actors (Leydesdorff, 2001; 

Bartels and Koria, 2012; Koria et al., 2014) and according to Morris-King (2014, p. ii) “innovation 

is principally driven by concentrations of mature academic research institutions and is mediated 

by consistent government support and highly active industrial partners.” 

 

The debate on sources of economic growth (Maddison, 2006) has extended the architecture of NSI 

literature to encapsulate: the economics of innovation and technology; systems of innovation 

(operationally differentiated at nested and networked vertical and horizontal levels including, on 
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the one hand, local, sub-regional, national, supra-regional and global and on the other hand sector, 

and technological)14; industrial dynamics; organisational and structural change; national 

innovation capacity (Bartels et al., 2012; Chang and Lin, 2012); and technology transfer.  

Greenacre, Gross and Speirs (2012) review NSI literature revealing the key elements, inter alia, as 

hierarchical and horizontal innovation. 

 

The architecture of systems of innovation is therefore nested and can be considered firstly as 

hierarchical organisation with the local form, at the core, encapsulated successively by the 

metropolitan, regional (sub-national), national, regional (supra-national), spatial and global 

systems respectively.  Secondly, there is the horizontal aspect of sector and technological systems 

of innovation in each of the nested layers.  The construct systems of innovation is therefore 

characterised by emergent features of dynamic complex adaptive systems.  Thus according to 

Levin (2002, p.17) “microscopic interactions and evolutionary processes give rise to macroscopic 

phenomena through nonlinear interactions, … subject to path dependence, with … multiple stable 

states, chaotic dynamics and frozen accidents.”  The international business aspect, manifest as 

transfers of innovations and technology through internalisation (Michie, 1998; Buckley and 

Casson, 2002; Dunning, 2003; Buckley and Carter, 2004; Buckley and Hashai, 2004) across the 

organisational boundaries of Multinational Enterprises (MNEs) via Foreign Direct Investment 

(FDI), is equally of great consequence and a critical research concern.  However, the dynamics of 

innovation within FDI and inside MNEs are beyond the scope of the present paper. 

 

The expanded architecture and intensifying relevance of NSI is illustrated by ever-widening 

research and practitioner coverage.  The 1996 DRUID Conference on ‘The Nature of Knowledge’ 

articulated only three sequential sessions15.  The DRUID 2014 Conference on ‘Entrepreneurship, 

Organization, Innovation’ presented 72 parallel paper sessions ranging from 1 — Team Formation 

and Performance to 72 — Disruptions in Skills and Leadership16. 

 

Given this expanding inventory and territory it is no wonder that Gatignon et al., (2001, p. 2) 

suggests that “Innovation and technical change are at the core of dynamic organizational 

capabilities … Yet after more than 30 years of research on innovation and organisational 

outcomes, fundamental concepts and units of analysis are often confused and/or ambiguous.”  A 

useful definition of NSI that assists in policy and which should include interacting structural 

elements that shape the innovation processes as well as system process linkages that conform 

innovation and economic performance (Lundvall 2007) is therefore difficult to arrive at.  Hence 

                                                 
14 Including Global Systems of Innovation (Archibugi and Iammarino, 1999; Klinger and Lederman, 2006), Continental Innovation Systems 
(Freeman, 2002), Regional Innovation Systems (Meesus et al., 1999), Metropolitan Innovation Systems (Fisher et al., 2001) and Spatial Innovation 
Systems (Audretsch and Feldman, 1996, 1999,; Oinas and Malecki, 2002), Sectoral Innovation Systems (Malerba ,2002; Tidd, 2006), Technological 
Innovation Systems (Carlsson and Stankiewicz, 1995). 
15 New trends in the Research on Industrial Dynamics; Changes in the Production and use of Knowledge with focus on the Codification Trend; and 
Industrial policy in the Learning Economy.  See Danish Research Unit for Industrial Dynamics 19-20 June 1996 
http://www.druid.dk/fileadmin/images/dokumenter/Conferences/Summer1996/PROGRAMME.pdf 
16 See Danish Research Unit for Industrial Dynamics 16-18 June 2014 
http://druid8.sit.aau.dk/druid/infosite/file/2014%20society/DRUID2014_Final_program%2018June2014.pdf 
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there are many definitions of NSI (Freeman, 1987; Lundvall, 1992; Nelson and Rosenberg., 1993; 

Edquist and Lundvall, 1993; Niosi et al., 1993; Patel and Pavitt, 1994; Metcalfe, 1995; OECD, 1992, 

1997, 2005; Malerba, 2002; Balzat and Hanusch, 2004; Achim & Popescu, 2009; Sakaraya, 2011; 

Bartels et al., 2012).  Nevertheless, despite recurrent commonalities which are: networks of 

actors, assets, organisations and institutions (North, 1991); complex reciprocating interactions 

and relationships; spatial knowledge diffusion and technical change; enterprises, universities and 

government, each NSI is idiosyncratic.  However, a valid critique of the definitions is the absence 

of specific reference to intermediaries, that is, Arbitrageurs as indicated above (Howells, 2006). 

 

Arguably, two analytical frameworks dominate the NSI literature.  The first by Andersen and 

Lundvall (1988) is of the NSI as a system of: (i) backward linkages in flows of information; (ii) 

learning by doing and searching; (iii) distinctions between industrial subsystems at different 

stages in terms of life cycle; and (iv) the open economy (Lundvall et al., 2002).  The second, by 

Leydesdorff and Etzkowitz (1996. p. 279) is the NSI as a “the Triple Helix of university-industry-

government relations.”  Fundamentally, the processes at the heart of the structure of NSI involve 

learning and Actors’ relationships.  The TH framework has evolved (Leydesdorff and Etzkowitz, 

1998; Etzkowitz, 2002; Leydesdorff, 2005) to represent an approach to the study of networks and 

linkages within, and between, the core Actors in the NSI and emphasises the role of KBIs for 

innovation in increasingly knowledge-based economies.  This model is arguably analytically 

different from the Andersen and Lundvall (1988) approach to NSI (Lundvall, 1988, 1992; Nelson, 

1993) wherein the emphasis is on firms and Actors are strongly influenced by the market and 

technological innovations (Nelson and Winter, 1982).  Two distinct paths in evolution of NSI 

literature evolution are therefore evident.  The first is oriented to learning (Lundvall, Ed., 1992); 

the second to systems (Nelson, 1993).  The two traditions, while distinctive in their respective 

emphases, nevertheless refer consistently to one another (Teixeira, 2013). 

 

Thus (Lundvall, 1992, p. 2) suggests a definition of NSI focusing on the development of technology 

and user-producer interactions as “ … the elements and relationships which interact in the 

production, diffusion, and use of new, and economically useful, knowledge are either located 

within or rooted inside the borders of a nation state”.  Bartels et al., (2012, p. 6) suggest a more 

comprehensive definition, in policy, systemic and organisational capital terms, as “the envelope of 

conforming policies as well as private and public organisations, their distributed institutional 

relations, and their coherent social and capital formations, that determine the vector of 

technological change, learning and application in the national economy.” 

 

The two definitions above, separated by two decades of research, encompass micro-level 

interactive production elements and relationships, as well as macro-level policies that determine 

technological change, learning and application.  They are contoured by interdisciplinary 

approaches within long-term economic performance (von Tunzelmann, 1997), national 

competitiveness (Porter, 1990) and growth accounting (Solow, 1960; Arrow, 1962; Jovanovic and 
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Rob, 1989; Greenwood and Jovanovic, 1998).  These approaches bring sharply into relief the 

indispensability of technological innovation and organisational capital in industrial dynamics and 

development (ul-Haque, 2007; Squicciarini and Le Mouel, 2012).  This implies that NSI consist of 

linkages between Actors, assets, organisations and institutions that enhance the stocks of 

intellectual capital and facilitate transactional exchange of knowledge flows, at both formal and 

informal levels (Buckley and Carter, 2004) and transformational activities of invention (Dunning, 

2003). 

 

Considering NSI as an envelope of conforming policies (Bartels et al., 2012) implies a further 

development in the structure and processes of NSI to include the effects of diffused ICT and 

arbitrageurs as the spread of ICT and digital information has trigged a new mode of development 

(Perez, 1983: Freeman and Louça, 2001).  The digital divide is not solely a matter of access, it is 

rather attributable to issues of storage, the ability to compute and transmit information; and to 

contextualize the quantity of hardware as well as the corresponding performance in relation to 

the four Actors in our extended TH4 model of NSI (Government, Knowledge based institutions, 

Industry and Arbitrageurs). 

 

According to Lundvall (2007) and our survey of the literature there is a paucity of empirical work 

on NSI and what there is generally has a sectoral level focus.  It is crucial to appreciate that the 

core of the innovation system is nested in institutions that shape people and relationships 

between people (Lundvall, 2007; Manjón and Merino, 2012).  There is empirical evidence of the 

contribution of knowledge transfers (albeit analysing exclusively university-industry 

relationships) to higher productivity and economic growth (Mansfield, 1991; Cohen et al., 2002; 

Mueller, 2006).  Nonetheless data show that the overwhelming majority of firms does not 

collaborate with universities (Bodas Freitas et al., 2013). 

 

As indicated by Leydesdorff and Etzkowitz (1996) the strength and quality of interactions 

between the core Actors determine the effectiveness and efficiency in the NSI and hence in 

creating and disseminating knowledge (Asheim and Gertler, 2005).  The spatial concentration of 

economic relations and dynamics of knowledge are ultimately based on intellectual assets (Cohen 

et al., 2000).  A direct consequence is that well-structured and functional NSI are prevalent in 

industrialised economies, even if several developing countries aspire to increase innovation to 

develop their economies17.  Therefore, the empirics of NSI carry significant implications for 

developing countries (Bartels and Lederer, 2009).  However, given the uniqueness of each NSI, the 

adoption and adaptation have to take place through local cultural and institutional lenses 

(Arocena and Sutz, 2000) and it is important to avoid copying the latest policy fashion, since there 

exist “good ways” that could be “better than others” (Arocena and Sutz, 2000, p. 59). 

 

                                                 
17 See African Union summit 2007 on science and technology for Africa’s development. 
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The NSI performance can therefore be analyzed at meta, macro and meso levels.  At meta level, 

Blanc and Sierra (1999) and Carlsson (2006) highlight the increasing internationalisation of 

alliances and interrelations between the actors.  Within these networks, an important role is 

played by KBIs and MNEs engaged in research-based techno-scientific collaborations.  These are 

the networks are examined in the Leydesdorff’s (2001) ‘neo evolutionary’ TH.  At macro level, 

decentralisation and social capital are the core subjects of Bjørnskov and Svendsen (2002) study 

on Scandinavian economic performance.  The focus of meso level and cluster NSI performance 

analysis is oriented to the importance of the knowledge base, organisational nature, institutional 

characteristics and involvement in innovation (Asheim and Coenen, 2004; Munk and Vintergaard, 

2004). 

 

Becheikh et al., (2006) find innovation to be measured by direct – innovation count, firm-based 

surveys – and indirect – research and development (R&D) and patent data – indicators.  These 

‘imperfect’ measures are characterised by disadvantages reported in Becheikh et al., (2006, Table 

2, p. 649).  Consequently, other variables have been adopted to measure innovation.  These tend to 

be a composite of the variables mentioned above or multi-item measurements of innovation 

obtained through factor analysis.  Thus we find variables that measure: firm characteristics, global 

and management functions; firms’ culture and structure; and firms’ assets and strategies 

(Becheikh et al., 2006) applied to measuring innovation in firms.  However, these indicators do not 

map and measure the ‘system’ of innovation manifest either in firms or at the national level of the 

economy because they are not applied simultaneously to all Actors in the NSI.  It is this feature of 

applying a singular DASI to all four Actors in the NSI which distinguishes our approach from 

others, including the Frascati and Oslo Manuals. 

 

The undeniable importance of innovation such that “knowledge, its accumulation and distribution, 

through institutions of human and social capital, plays an increasingly crucial role as a key 

economic factor” (Koria et al., 2012, p. 1) has evoked the empirical measurement of innovation 

variables and NSI (Castellacci and Natera, 2012; Guan and Chen, 2012) as well as ‘functions of 

innovation systems’ (Hekkert et al., 2007).  Mostly the dependent variable (innovation) is 

regressed – through OLS regression – on explanatory independent variables.  Becheikh et al., 

(2006) indicate that the literature suggests about sixty explanatory variables of innovation 

dichotomised into; firm specific factors (i.e. advantages idiosyncratic to the firm), and context or 

industry factors (i.e. related to the firm’s environment) (Hawawini et al., 2003). 

 

The empirical literature on NSI and innovation focuses overwhelmingly on industry and firms 

(Buesa et al., 2010; Chaminade, 2011).  Relatively few works concentrate on industry and KBIs 

(OECD, 1997) and even fewer studies measure the three Actors in the traditional TH framework 

(Chanthes, 2012).  Empirical work dedicated to measuring the four Actors in the TH4 is even rarer 

(Guston, 2001; Fisher and Atkinson-Grosjean, 2002; Cooke, 2004; Howells, 2006; Koria and 

Köszegi, 2011; Bartels and Koria, 2012; Koria et al., 2012).  Becheikh et al., (2006) find that of 
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statistical and econometric techniques used to study innovation only 6% is SEM.  The contextual 

determinants of innovation, related to the encapsulating environment of the firm, suggest that the 

following dimensions are crucial to a better understanding of NSI (Becheikh et al., 2006): the 

firm’s industry; the spatiality (local to global location); Actor Intra- and Inter-relations; knowledge 

and technology transfers; government policies on science, technology and innovation; institutions 

and the predominant organisational culture. 

 

The incident effect of industry and regional characteristics on innovation and NSI is acknowledged 

(Cooke et al., 1998; Doloreux and Parto, 2005; Iammarino, 2005).  With respect to the industry 

dimension, three key factors are evident: technological dynamism; demand growth; and industry 

structure (Porter, 1990; Zahra, 1993; Evangelista et al., 1997; Crépon et al., 1998; Porter, 1998; 

Quadros et al., 2001;).  Regarding industry structure, industry concentration may have a negative 

(Blundell et al., 1999) or a positive impact on innovation (Smolny, 2003), in contrast to Baptista 

and Swann (1998) who conclude no significant relationship between concentration and 

innovation. 

 

Regarding the regional dimension, spatial variables such as geographic location and proximity 

have a significant effect on the firm’s innovative capacity in terms of science infrastructure and 

industrial technology output (Asheim and Isaksen, 1997; Blind and Grupp, 1999).  Within the 

regional context, proximity enables interaction effectiveness and efficiency (Arundel and Geuna, 

2004; Morgan, 2004; Ponds et al., 2007). 

 

Finally, and most crucially, proximity interactions and networking among Actors are seen as 

determinants of innovation.  The systemic approach to innovation rests on the notion of non-

linear and multidisciplinary dynamics and connectedness between Actors, assets, organisations 

and institutions within a coherent policy space (Balzat and Hanusch, 2003).  The correlation 

between innovation and cooperative networking is indicated by Fritsch and Meschede (2001), and 

Keizer et al., (2002).  Analysis by Landry et al., (2002) of the relative probability that a firm 

innovates or not regressed on business, information and research networks finds that the greater 

the networks of the firm, the higher the likelihood to innovate.  The acquisition of knowledge and 

technologies; government and public policies of the economy in which the firm is located are also 

contextual determinants of innovation (Pavitt and Walker, 1976; Mowery, 1983; Ahuja and Katila, 

2001; Intarakumnerd et al., 2002; Bartels et al., 2012; Blind, 2012) although Love and Roper 

(2001) find insignificant effect). 

 

With a systems of innovation approach, we emphasize spatiality in terms of Intra- and Inter-Actor 

linkages as encapsulating the location, proximity, connectedness, networking determinants of 

innovation and innovativeness in the NSI.  Additionally, in our TH4 framework, we emphasize 

Actor importance; barriers to innovation; the diffusion of ICT as a facilitator of linkages; and the 
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role of government in terms of firstly, policy instrument success and, secondly governance 

(Kuhlmann, 2001; Kuhlmann and Edler, 2003; D’Este et al., 2012). 

 

The four Actors, as previously mentioned, are; Government, Medium- and High-tech Industries, 

KBIs, and Arbitrageurs (Financial Institutions, Knowledge-brokers and Venture Capitalists).  It is 

increasingly evident that the efficacity or in other words, the capacity and capability, or the 

effectiveness and efficiency, of the NSI is, ceteris paribus, more reliant on relationships rather than 

physical assets (OECD, 1999; Ritter and Gemünden, 2003, 2004). 

 

However, regarding the TH framework, in the context of developing countries the three Actors are 

relatively separate in their roles, with little overlap in functional relationships, thus precluding the 

benefits of inter-relational exchange.  This is compounded by the lack of technology transfer or 

licensing offices within KBIs and the absence of Arbitrageurs.  The TH4 (Koria and Köszegi, 2011; 

Bartels and Koria, 2012; Koria et al., 2012; Leydesdorff, 2012; Koria et al., 2014) introduces the 

fourth Actor (Arbitrageurs), indicating the need for access to financial and information resources 

for effective and efficient NSI performance.  The four Actors of the TH4 are construed to operate in 

an environment of diffused ICT as illustrated in figure 1 below.  The TH4 represents the 

underlying framework used in this paper to present the rationale and analytical approach in 

examining the GNSI. 

Figure 1 – Triple Helix Type 4 
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3. Modelling 

We aver that the TH4 is powerfully analytical and encapsulates the vertical and horizontal 

dimensions of NSI (Greenacre, Gross and Speirs, 2012).  Furthermore, it encompasses the financial 

(Unger and Zagler, 2003), scientific-technological (Etzkowitz and Leydesdorff, 2000) and 

production-industrial (Lee and Kim, 2001) components of NSI.  The TH4 thus enables the accurate 

mapping and measuring of (N)SI (Bartels and Koria, 2012; Koria et al., 2014). 

 

The SEM, Figure 2 below, is the baseline model depicting the GNSI in terms of efficacity, barriers to 

innovation and Actor connectedness.  It hypothesises that the structural model of the GNSI 

Efficacity is determined by (Actor) Connectedness (H1) and Barriers to Innovation (H2). 

 

The measurement model of the SEM posits that: (i) GNSI Efficacity is measured by the Factors; 

Fiscal and Monetary Incentives (E1), Knowledge-based Innovation Capability (E2) (H3); (ii) 

(Actor) Connectedness is measured by Factors; KBIs — Intermediary Inter-linkages (C1), Actor 

Intra-linkages (C2), ICT Diffusion (C3), Government — Intermediary Inter-linkages (C4), 

Arbitrageurs — Business Enterprises Inter-linkages (C5) (H4); (iii) Barriers to Innovation are 

measured by Factors; ICT Capability/Capacity (B1), Unsophisticated Markets (B2), Deficient Fiscal 

Policy (B3), Reduced Organisational Risks (B4), and Deficient Human Capital (B5) (H5); and (iv) 

there is a non-recursive relationship between (Actor) Connectedness and Barriers to Innovation 

(H6). 
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Figure 2: Path Diagram for GNSI Model (Baseline Model 1) 
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In the SEM path diagrams, arrows represent equations (and their direction indicates dependent 

and independent variables), ovals indicate latent constructs and rectangles indicate observed 

variables (in the DASI).  We posit that the factors influence observable variables of NSI which are 

SI specific (i.e. content, internal and idiosyncratic to the NSI) and context specific (i.e. external and 

related to the environment of the NSI) (Becheikh et al., 2006). 

 

4. Methodology 

The crucially important differentiating characteristic of our methodology from other 

methodologies, including the Frascati and Oslo Manuals, is the fact that our survey applies 

contemporaneously the same DASI to the three core Actors of the NSI as well as to a fourth Actor, 

Arbitrageurs, acknowledged to play a crucial role of intermediation between sources of knowledge 

and commercialisation of knowledge.  Furthermore, the DASI is applied using ICT. 

 

We perform EFA and SEM on data acquired by the DASI on the GNSI.  To the knowledge of the 

Authors this is the first to map and measure the NSI of a country – i.e. the Intra- and Inter-

relationships between policy decision makers (GOV), Medium and High-Technology Industries 

(MHTI), Knowledge-based Institutions (KBIs), and Arbitrageurs (ARBs) (Bartels and Koria, 2012; 

Koria and Koszegi; 2011; Koria et al., 2012).  It is important to note that in order to arrive at the 

most satisfactory depiction of the GNSI in terms of Efficacity, Barriers to Innovation and Actor 

Connectedness the models are subject to respecification based on the judicious evaluation of 

results of EFA, SEM, NSI literature, theory and empirics. 

 

4.1  Exploratory Factor Analysis (EFA) 

4.1.1  EFA Methodology 

4.1.1.1 Factor Extraction 

The Data was subjected to EFA in order to isolate latent influencers of observed variables (Bartels 

and Koria, 2012).  EFA condenses observed variables into factors in a pattern matrix (clusters of 

inter-correlated variables).  The factors represent the underlying structure responsible for the 

variation of variables in the data and thus in the population and universe (Kim and Mueller, 1978).  

We select EFA as no a priori constraints are imposed on the data structure (Bartels et al., 2009).  

EFA is based on the following assumptions: 

1) There is a correlation pattern between the examined variables.  This assumption implies that 

the data correlation matrix  is not an identity matrix18, and it can be tested through Bartlett’s 

test of sphericity.  Variables’ inter-correlation is also measured by the Kaiser-Meyer-Olkin 

(KMO) Measure of Sampling Adequacy (MSA).  This index ranges from 0 to 1 and measures 

how well a variable is predicted by the other variables in the dataset.  An MSA of at least 0.5 is 

required to carry out a meaningful EFA (Hair et al., 2010). 

                                                 
18 Each variable is not only correlated with itself. 



 16 

2) The vector of observed variables, , is a linear combination of several latent factors.  More 

specifically, we have: 

 (Widaman, 2007) 

Where  is the vector of factor scores (i.e. the values that the latent variables assume for every 

observation), and  is the matrix of the coefficients of , [i.e. the matrix of (unrotated) factor 

loadings]. 

3) The mean of the variables in  is standardised to zero. 

4) Factors are not uncorrelated. 

5) High ratio of cases to variables.  In our example we have 234 cases and 27, 14 and 11 variables 

with respect to the EFA19. 

6) Normal distribution of variables. 

7) High random sample size.  In our case our sample size of 234 is deemed “fair’ to “good’ by 

Comrey and Lee (1992). 

8) Interval or ratio scales of measurement.  In our case we use Likert scales with five intervals 

(Labovitz, 1967, 1970, 1971, 1972, 1975; Jamieson, 2004). 

We assume that  is fully determined by the factors, with no (or negligible) margin of error.  This 

assumption is justified by prior knowledge of the variables and by the high reliability, validity and 

quality of our data, derived by the use of Lime Survey, which increases response rates and reduces 

the need for data entry (Bartels et al, 2012)20. 

 

The Factor Extraction employed herein is Principal Component Factoring (PCF) (Abdi and 

Williams, 2010).  This methodology assumes that  is fully determined by the latent factors and 

calculates  so as to maximize the amount of total observed variance in the data driven by each 

latent construct.  PCF requires a criterion to determine the number of components extracted.  We 

employ the Kaiser criterion; components with Eigen values lower than one are dropped, as this 

implies that they do not explain a sufficient amount of data variance.  It must be borne in mind, 

however, that the decision on the amount of factors to retain ultimately depends on 

understanding the NSI phenomenon and on previous analyses (Jöreskog, 2007). 

4.1.1.2 Factor Rotation 

The matrix of unrotated factor loadings  can be difficult to interpret.  This problem is solved 

through factor rotation (Jennrich, 2007).  Factor rotation comprises a transformation of the 

loading matrix  with the aim of obtaining a matrix of rotated loadings  such that each factor 

has variables’ loadings (i.e. each factor influences reliably a distinct set of variables).  There are 

two typologies of rotation: 

1) Orthogonal Rotation, used when factors are hypothesized not to be inter-correlated; and 

2) Oblique Rotation, used when factors are assumed to be inter-correlated. 

                                                 
19 Heuristics indicate that the ratio of cases (N) to variables (p) range anywhere from 3:1, 6:1, 10:1, 15:1, or 20:1 (Williams et al., 2012) and Hogarty 
et al., (2005, p.222) find in testing different ratio that “our results show that there was not a minimum level of N or N:p ratio to achieve good factor 
recovery across conditions examined”. 
20 Our response rate is 52.7% (234 responses out of 444 target respondents in the convenient sample).  In surveys directed towards senior 
management the general response rate is at 30%.  See Harzing (2006). 
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Given the correlation matrix , the matrix of unrotated loadings  and the covariance matrix of 

factor scores , oblique rotation consists in estimating a matrix of rotated loadings  such that 

 and  minimizes a function , denominated “rotation criterion”.  The 

rotation criterion selected for this analysis is the Direct Oblimin Criterion21.  This oblique rotation 

is chosen as factors are expected to be inter-correlated, based on NSI Theory.  When interpreting 

and reporting results, we ignore variables with loadings on factors lower than 0.55 (i.e. with less 

than 30.25% of their variance explained by the factor), in order to maintain high statistical 

significance (Bartels et al., 2009). 

 

After rotation, factors are named, taking into consideration relevant theory and variables with the 

highest factor loadings.  Finally, EFA results are validated by calculating Cronbach’s Alpha, a 

measure of inter-correlation between variables, and an indication of how consistently they are 

reflected by the latent construct.  The following table shows cutoff values for this measure. 

 

Table 1: Cutoff values for Cronbach’s Alpha (Bartels and Koria, 2012; p. 46) 

Cronbach's Alpha Internal Consistency/Reliability

α≥0.9 Excellent

0.8≤α<0.9 Good

0.7≤α<0.8 Acceptable

0.6≤α<0.7 Questionable

0.5≤α<0.6 Poor

α<0.5 Unacceptable  
 

5.  EFA Analysis and Results 

5.1  EFA Results 

EFA results are reported in tables as follows: the column “factor number” indicates the descending 

rank order of the importance of the factor, based on the amount of total variance explained.  The 

column “factor name” provides a description for the grouped variables influenced by the factor.  

The column “factor loading” indicates the correlation between factors and variables, i.e. the extent 

to which the factor influences the variable. 

5.1.1  EFA Results: Barriers to Innovation 

Barriers to Innovation were measured by Respondents judging the level of constraining 

variables22.  Table 2 below details EFA results for this group of variables.  EFA results23 are 

meaningful, as both the KMO (with “meritorious24” value) and Bartlett’s test support the presence 

of significant correlation between the variables.  All factors have good to acceptable Cronbach’s 

                                                 
21With the parameter Delta set to zero. 
22 On the Likert Scale of 1 – Very High Constraint, 2 - High Constraint, 3 – Neutral, 4 – Low Constraint, 5 – Very Low Constraint. 
23 It must be noted that analysis result change slightly when replicating the analysis on single actor groups (Bartels and Koria, 2012). 
24 Hair et al., 2010. 
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Alpha values, except for Factor 5 (Deficient Human Capital), which has unacceptable consistency 

despite its theoretical relevance. 

5.1.2  EFA Results: GNSI Inter and Intra-Linkages 

Actor Intra- and Inter-linkages were measured by Respondents judging the strength of the 

linkages between the four core Actors of the GNSI25.  Table 3 below details EFA results for this 

group of variables.  EFA results are meaningful, as both the KMO (with “meritorious26” value) and 

Bartlett’s test support significant correlation pattern between the variables.  All factors have good 

to acceptable Cronbach’s Alpha, except for Factor 3 (ICT Diffusion), which has Unacceptable 

consistency despite its theoretical relevance. 

 

With respect to the interpretation of EFA results, we notice that data variability is mainly driven 

by Factor 1, representing the strength of connections between KBI and Intermediaries, notably FI 

and ARB.  The strength of Actor Intra-linkages (Factor 2) is also an important driver of data 

dynamics, while other Factors, although theoretically relevant (such as the strength of GOV’s 

linkages with other Actors), have minimal influence on total variance.  For the sake of analytical 

rigour, and as theory and preliminary inspection of the data leads us to expect a higher number of 

factors, as well as due to the inter-correlation between items regarding the strength of linkages of 

the same Actor category, we repeated EFA forcing the extraction of seven factors, in order to gain 

a finer resolution regarding our initial model.  The results are in table 4 below.

                                                 
25 On the Likert Scale of 1 – Very Strong, 2 - Strong, 3 – Neutral, 4 – Weak, 5 – Very Weak. 
26Hair et al., 2010. 
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All Respondents – Barriers to Innovation 

Factor 

Number 

Name of Factor Variables Factor 

Loading 

Cronbach’s 

Alpha 

Total 

Variance 

Explained 

(TVE) 

KMO Bartlet’s Test of Sphericity 

Chi Squared Df Significance 

1 (B1) ICT 

Capability/Capacity  

 Rate of Access to ITC 

[qd001d116] 

 ICT Capacity [qd001d117] 

0.875 

0.870 

0.918 31.810 0.815 1671.852 153 0.000 

2 (B2) Unsophisticated 

Markets 

 Lack of Demanding Customers 

[qd001d108] 

 Lack of Innovative Customers 

[qd001d109] 

 Lack of Competition 

[qd001d107] 

 

0.893 

 

0.846 

 

0.686 

0.752 9.715 

3 (B3) Deficient Fiscal 

Policy 

 Lack of Finance [qd001d102] 

 Lack of Explicit Policy Support 

[qd001d101] 

0.807 

0.797 

0.603 8.154 

4 (B4) Reduced 

Organisational Risks 

 Excessive Perceived Economic 

Risk [qd001d114] 

 Organisational Rigidities 

[qd001d112] 

 Hierarchical Organisations 

[qd001d105] 

 Restrictive Public Governmental 

Regulations [qd001d115] 

 

-0.801 

 

-0.725 

 

-0.684 

 

-0.672 

0.758 6.670 

5 (B5) Deficient Human 

Capital 

 Adequacy of Human Resources 

[qc012] 

 Lack of Technically Trained 

Manpower [qd001d103] 

 Quality of Technically Trained 

Manpower [qd001d104] 

0.810 

 

-0.780 

 

-0.572 

0.245 6.414 

    Cumulative 

total (CTVE) 

62.763 

 

Table 2: EFA on Barriers to Innovation
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All Respondents - Connectedness  

Factor 

Number 

Name of Factor Variables Factor 

Loading 

Cronbach’s 

Alpha 

Total 

Variance 

Explained 

(TVE) 

KMO Bartlet’s Test of Sphericity 

Chi Squared Df Significance 

1 (C1) KBI/Intermediary  

Inter-Linkages 

 Linkages HE-ARB [qc003c307] 

 Linkages RI-FI [qc004c406] 

 Linkages HE-FI [qc003c306] 

 Linkages RI-BE [qc004c404] 

 Linkages HE-ISTC [qc003c305] 

 Linkages RI-ARB [qc004c407] 

 Linkages BE-RI [qc005c504] 

 Linkages ARB-RI [qc006c606] 

 Linkages RI-ISTC [qc004c405] 

 Linkages HE-BE [qc003c304] 

 Linkages BE-HE [qc005c503] 

 Linkages BE-ISTC [qc005c505] 

 Linkages ARB-ISTC [qc006c607] 

 Linkages ARB-HE [qc006c605] 

0.860 

0.854 

0.841 

0.810 

0.801 

0.799 

0.794 

0.768 

0.764 

0.759 

0.754 

0.735 

0.732 

0.666 

0.966 47.971 0.939 7906.449 630 0.000 

2 (C2) Actor 

Intra-Linkages 

 Linkages RI-RI [qc004c401] 

 Linkages BE-BE [qc005-c501] 

 Linkages HE-HE [qc003c301] 

 Linkages ARB/FI-ARB 

[qc006c601] 

 Linkages GOV-GOV [qc002c201] 

 Linkages ARB/FI-FI [qc006c602] 

 Linkages RI-HE [qc004c403] 

0.884 

0.822 

0.788 

0.764 

0.580 

0.579 

0.572 

0.901 10.910 

3 (C3) ICT Diffusion  Level of ICT Diffusion [qc014] 

 Linkages GOV-RI [qc002c203] 

0.685 

0.570 

.459 6.311 

4 (C4) GOV/Intermediary 

Inter-Linkages 

 Linkages GOV-BE [qc002c204] 

 Linkages GOV-FI [qc002c206] 

 Linkages GOV-ARB [qc002c207] 

 Linkage GOV-ISTC [qc002c205] 

-0.774 

-0.773 

-0.701 

-0.782 

0.904 3.880 

5 (C5) ARB/BE  

Inter-Linkages 

 Linkages ARB/FI-BE [qc006c603] 

 Linkages BE-FI [qc005c506] 

0.686 

0.561 

0.766 2.815 

    Cumulative 

total (CTVE) 

71.888 

Table 3: EFA on Connectedness 
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Chi squared df Significance

1 (C1) KBI/ Intermediary Intrlinkages • Linkages HE-FI [qc003c306]

• Linkages HE-ARB [qc003c307]

• Linkages HE-ISTC [qc003c305]

• Linkages RI-FI [qc004c406]

• Linkages RI-ISTC [qc004c405]

• Linkages HE-BE [qc003c304]

• Linkages RI-BE [qc004c404]

0.843

0.759

0.720

0.688

0.652

0.602

0.566

0.944 47.971

2 (C2) Actor Intra-Linkages • Linkages RI-RI [qc004c401]

• Linkages HE-HE [qc003c301]

• Linkages BE-BE [qc005-c501]

• Linkages GOV-GOV [qc002c201]

0.886

0.813

0.779

0.703

0.875 10.910

3 (C3) GOV/KBI Inter-Linkages • Linkages GOV-RI [qc002c203]

• Linkages GOV-HE [qc002c202]

• Linkages RI-GOV [qc004c402]

• Linkages HE-GOV [qc003c302]

• Linkages HE-RI [qc003c303]

• Linkages RI-HE [qc004c403]

0.855

0.780

0.707

0.706

0.626

0.595

0.917 6.311

4 (C4) GOV/BE-Inermediary

 Inter-Linkages

• Linkages GOV-BE [qc002c204]

• Linkages GOV-FI [qc002c206]

• Linkages GOV-ARB [qc002c207]

-0.719

-0.685

-0.652

0.880 3.880

5 (C5) BE/Intermediary

Inter-Linkages

• Linkages BE-FI [qc005c506]

• Linkages BE-ARB [qc005c507]

• Linkages FI- BE [qc006c603]

0.833

0.742

0.636

0.842 2.815

6 ICT Diffusion • ICT Diffusion [qc014] 0.989 2.450

7 (C6) ARB/KBI Inter-Linkages • Linkages ARB-RI [qc006c606]

• Linkages ARB-HE [qc006c605]

• Linkages ARB-ISTC [qc006c607]

• Linkages ARB-GOV [qc006c604]

-0.791

-0.780

-0.685

-0.646

0.917 2.160

Cumulative

Total (CTVE) 76.498

0.939 7906.449 630 0.000

All Respondents: Connectedness (Forced)

Bartlett's test of SphericityFactor 

Number

Factor

Name

Variables Factor

Loading

Cronbach's 

Alpha

Total 

Variance 

Explained

KMO

 

Table 4: EFA on Connectedness with forced number of factors 
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As in the previous analysis, the KMO and Bartlett’s test support significant inter-correlation 

between variables.  All Factors have good to excellent Cronbach’s Alpha.  Despite the changes in 

factor composition, interpretation of EFA results is not altered as KBI/Intermediary Inter-linkages 

still account for most of the total variance, followed by Actor Intra-linkages, while other factors 

although theoretically relevant, have relatively low levels of influence on total variance. 

5.1.3  EFA Results: Measures of GNSI Efficacity 

GNSI Efficacity is measured by factors that influence variables that indicate: 

1. Effectiveness of Policies promoting Innovation 

2. Links of RI to the Production System 

3. Level of Innovativeness in Ghanaian BE. 

Survey items related to this measurement construct were subjected to EFA: the results are 

detailed in table 5 below.  Our KMO value and Bartlett’s test support significant correlation 

between observed variables.  Factor 1 (Fiscal and Monetary Policy Incentives), the main driver of 

total variance has an excellent Cronbach’s Alpha, while the Cronbach’s Alpha of Factor 2 

(Knowledge Based Innovation Capability) is “questionable” (Bartels and Koria, 2012): 

nevertheless the factor is retained for its theoretical relevance.  These results are not fully 

convincing because items measuring very different innovation-promoting policies are lumped 

together and because these results do not coincide with those of previous analyses27 where 

different factors influence, respectively, the fiscal and monetary incentives, as well as standards 

setting and regulation. 

 

Therefore, again for the sake of analytical rigour, we rerun the EFA, forcing the extraction of three 

factors, in order to gain a finer resolution regarding our initial model with respect to obtaining 

results analogous to those in Bartels and Koria (2012).  The results are detailed in table 6 below. 

 

As in the previous analysis, the KMO and Bartlett’s test support significant inter-correlation 

between variables.  Factors 1 and 3 have excellent internal consistency, while the Cronbach’s 

Alpha of Factor 2 remains questionable.  We nevertheless retain the factor because of its 

theoretical relevance. 

                                                 
27 See table 9.18, p. 61, Bartels and Koria (2012). 
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All respondents GNSI Efficacity 

Factor 

Number 

Name of Factor Variables Factor 

Loading 

Cronbach’s 

Alpha 

Total 

Variance 

Explained 

(TVE) 

KMO Bartlet’s Test of Sphericity 

Chi Squared Df Significance 

1 (E1) Fiscal and monetary 

Incentives 

 Tax Breaks [qc017c1702] 

 Research Grants [qc017c1701] 

 Government Backed Venture Capital 

[qc017c1704] 

 Subsidised Loans [qc017c1703 

 Labour Mobility [qc017c1709] 

 Regulation [qc017c1708] 

 ICT Access [qc017c1710] 

 Standards Setting [qc017c1707] 

 Government Procurement 

[qc017c1706] 

 Donor Funds [qc017c1705] 

0.889 

0.884 

 

0.871 

0.855 

0.836 

0.805 

0.803 

0.789 

 

0.775 

 

0.750 

0.95 58.759 0.929 2099.037 66 0.000 

2 (E2) Knowledge-Based  

Innovation 

Capability 

 Level of Innovativeness BE [qc015] 

 Linkages RI-Production [qc013] 

0.841 

0.822 

0.608 11.116 

    Cumulative 

total (CTVE) 

69.874 

Table 5: EFA on GNSI Efficacity 
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All respondents GNSI Efficacity Forced 

Factor 

Number 

Name of Factor Variables Factor 

Loading 

Cronbach’s 

Alpha 

Total Variance 

Explained 

(TVE) 

KMO Bartlet’s Test of Sphericity 

Chi Squared Df Significance 

1 (E1) Fiscal and Monetary 

Incentives 

 Research Grants  

 Tax Breaks  

 Government Backed Venture Capital  

 Subsidised Loans  

 Donor Funds  

0.889 

0.856 

0.845 

0.822 

0.595 

 

0.919 58.759 0.929 2099.037 66 0.000 

2 (E2) Knowledge-Based 

Innovation 

Capability 

 Linkages RI-Production  

 Level of Innovativeness BE 

0.894 

0.759 

0.608 11.116 

3 (E3) Standards and 

Regulatory 

Incentives 

 Standards Setting  

 Regulation  

 ICT Access  

 Labour Mobility  

- 0.857 

- 0.810 

- 0.587 

- 0.579 

0.911 6.047 

    Cumulative 

total (CTVE) 

75.922 

Table 6: EFA on GNSI Efficacity with forced number of factors 
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6.  SEM Analysis and Results 

6.1   Introduction to SEM 

6.1.1  Advantages of SEM 

Our theoretical model of the GNSI Efficacity is estimated and tested through SEM.  This statistical 

technique uses the sample covariance matrix between observed variables as a starting point for 

model estimation.  It presents the following advantages (Walker and Maddan, 2008; Bentler and 

Savalei, 2010): 

1) It provides a framework for estimating and testing complex theoretical models, incorporating 

multiple dependent and independent variables.  This allows contemporaneous estimation of 

all relevant model parameters. 

2) It allows the analysis of latent constructs, measured by clusters of observed variables, and of 

their relationship with other latent constructs (the ensemble of such relationships is referred 

to as the structural model).  It also accounts for measurement error in the relationship 

between latent factors and their observed indicators (the measurement model). 

3) It validates the use of observed variables as indicators for latent constructs and allows 

assessment of whether the relationships between these constructs are consistent with theory.  

This allows validation of the use of the indicators for policy formulation and for monitoring 

policy outcomes (Kaplan and Elliott, 1997; Bollen and Pearl, 2013). 

6.1.2  Motivations for SEM use 

Our model has several characteristics that make the use of SEM ideal for estimation.  First, the 

model is complex, with many variables having direct and indirect effects on GNSI Efficacity.  Only 

SEM allows simultaneous estimation and testing of all model equations.  Secondly, in our dataset 

many observed variables measure latent constructs: most statistical techniques use observed 

variables as perfect substitutes for latent factors.  They are therefore unable to account for 

measurement errors or for the reliability of indicators (Bentler and Savalei, 2010).  SEM, by 

estimating the relationship28 between factors and their indicators, is one of the few techniques 

able to do so.  The inclusion of the measurement model for latent factors also allows a clearer 

interpretation of regression coefficients, as opposed to the use of estimated factor scores in 

regression (Walker and Maddan, 2008). 

6.1.3  Fundamental assumptions of SEM 

The meaning and validity of SEM results depend on the data and on several assumptions, both on 

the data and on the analysed phenomenon (Bartels et al., 2006).  SEM thus assumes a 

confirmatory function; if the model is found to fit the data, the theory and the assumptions 

underlying the model acquire validity.  Model validity can then be increased further if the model is 

successfully applied to a different sample (this process is denominated Cross-Validation) (Barrett, 

2007; Bollen and Pearl, 2013). 

6.1.3.1 Assumptions regarding the Data 

Standard SEM estimation relies on the following statistical assumptions (Kline, 2011): 

                                                 
28 Also defined as Measurement Models. 
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1) Random Sampling: each individual in the population29 has the same probability of belonging to 

the sample.  As population composition and response rates vary with Actor category, our 

sample compromises this assumption.  However, balancing the sample would lead to a loss of 

information.  Furthermore, such a sample would no longer be representative of the population. 

2) The data is continuous.  This assumption is not strictly respected in our dataset, which is 

constituted by categorical Likert scale scores.  However, our data can be treated as continuous, 

as our scale has more than four categories (Labovitz, 1970, 1971; Bentler and Chou, 1987; 

Owuor, 2001). 

3) The data follows a multivariate normal distribution.  This is not strictly adhered to by our 

sample, as responses may be concentrated at the extremes of the Likert scale. 

4) Observations are independent from one another.  This assumption is relaxed in our sample, as 

item scores may be influenced by Actor category. 

5) Observed exogenous variables are measured without error.  The use of Lime Survey increases 

data reliability by reducing the need for data entry (Koria and Koszegi, 2011). 

6.1.3.2 Assumptions regarding the Model 

Model specification in SEM is guided by the following assumptions (Kline, 2011): 

1) Existence of a significant correlation between dependent and independent variables. 

2) Assumptions (grounded in theory) on the direction of causality.  These are necessary because, 

given, for example, the variables (either latent or observed) X and Y, both a model where X 

causes Y and another one where Y causes X are compatible with their sample covariance 

matrix  (Bollen and Pearl, 2013).  This issue is known as Covariance Equivalence (Spirtes et 

al., 1998).  The directionality assumptions underlying our model are based on NSI theory. 

3) Linear relationship between the variables. 

4) Isolation (Kline, 2011): when assuming a causal link from X to Y, we are assuming that there is 

no other plausible explanation (such as the presence of extraneous and/or confounding 

variables) for their covariation.  This implies that the correlation between X and Y holds after 

including in the model other variables that might have an effect on Y.  With respect to this 

study, NSI theory rules out the presence of extraneous/confounding variables. 

6.1.3.3 Assumptions regarding Latent Constructs 

Another fundamental assumption required regards the nature of latent constructs.  They can be: 

a) Reflective: observed variables are measures of a thematically one-dimensional (Petter et al., 

2007) latent construct.  Therefore, changes in the construct bring about changes in the values 

of its indicator variables.  Indicators are interchangeable and inter-correlated. (Jarvis et al., 

2003). 

b) Formative: the construct is a multidimensional composite of its indicators (Petter et al., 2007), 

like an index measure (Jarvis et al., 2003).  This implies that changes in a single indicator bring 

about a change in the latent construct.  Therefore indicator variables are not interchangeable; 

                                                 
29 That is the universe of potential respondents. 
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removing one of them changes meaning and value of the construct.  Indicator variables of 

formative constructs can be uncorrelated (Jarvis et al., 2003). 

The same classification can also be applied to second order latent constructs, that is, constructs 

having other latent factors as indicators. 

 

Montecarlo simulations by Jarvis et al. (2003) and Petter et al. (2007) have shown that specifying 

formative constructs as reflective ones causes serious model misspecification and bias in 

estimates and fit indices (Jarvis et al., 2003; Petter et al., 2007).  The high reliability of our first 

order latent constructs, their inter-correlation and their one-dimensionality, evinced by analysing 

their indicators, leads us, together with NSI theory, to conclude that they are reflective. 

 

With respect to the second order constructs, the reflective nature of the construct “GNSI Efficacity” 

is compatible with NSI theory, as is the one of the construct “Barriers to Innovation”.  Finally, the 

second order construct “Connectedness” measures the strength of links between NSI Actors and is 

thus one-dimensional; it can therefore be specified as reflective. 

 

6.2  SEM Estimation 

6.2.1  Mathematical Principles of SEM 

We illustrate the mathematical principles of SEM estimation through an example, based on Bentler 

and Savalei (2010).  We want to estimate with SEM the measurement model for Factor “Reduced 

Organizational Risks” (B4), which we assume influences the scores of item variables d115, d105, 

d112 and d114.  The model can be represented through a path diagram (Figure 3).  In path 

diagrams, arrows represent equations (and their direction indicates dependent and independent 

variables), ovals indicate latent constructs and rectangles indicate observed variables. 

Figure 3: Measurement model for factor B4: “Organizational Risks” 

 



 28 

Mathematically, the model consists of four equations: each of the item scores is a function of the 

latent factor, of a constant and of an error term.  We assume that the error terms enter the 

equations with a coefficient fixed to one. 

 

 

 

 
Given the variance of our latent factor, , and the rules of covariance algebra (and assuming that 

errors are not correlated), the population covariance matrix of our observed indicators ( ), can be 

represented thus: 

 
This matrix is uninformative, as B4 and  are unobserved.  To estimate it, we need to fix the value 

of one of the factor loadings to one.  Bentler and Savalei (2010) recommend choosing for this 

purpose ‘a good indicator’ of the construct.  We therefore fix to one the coefficient of the indicator 

with the highest factor loading30.  In this case we choose , the factor loading of item d114. We 

then obtain the following results: 

 
We can then write  as: 

 
Since we observe S, the sample covariance matrix between the indicators, and , the sample 

variance of d114, we can now estimate the parameters  and . 

6.2.2  SEM Estimation Methods 

The various SEM estimation methods all have the aim of estimating parameters so to minimize the 

difference between the sample covariance matrix S and , the covariance matrix implied by the 

model (which is a function of the observed variances and covariances between indicators and of 

the estimated parameters). 

 

 

 

                                                 
30 Loadings are fixed to one even if they are negative in EFA.  We choose this course of action because: (i) it is the norm in SEM and (ii) it does not 
affect the covariance matrix of observed variables and thus the estimation.  Finally, even if the sign of coefficients change, the substantive meaning 
of the estimates does not change; stating that an increase in “Reduced Organisational Risks” causes a decrease in item scores is equivalent to stating 
that an increase in “Organizational Risks” causes an increase in scores.  We are basically observing the same phenomenon through different, but 
equivalent, perspectives.  With respect to second order factors, we fix to one the loading of the factor explaining the highest proportion of the total 
variance. 
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6.2.2.1 Maximum Likelihood Estimation (MLE) 

If the data follows a multivariate normal distribution, the covariance matrix of the indicators for a 

single observation will follow the Wishart Distribution31 (Jöreskog, 1978).  If all the observations 

are independent and identically distributed, the product of the covariance density functions of all 

observations can be interpreted as the density function of the sample.  MLE is an iterative process 

that calculates parameter estimates such that the probability of observing the actual sample is 

maximized. 

 

Maximum likelihood estimates are highly meaningful statistically and are asymptotically unbiased, 

consistent and efficient.  However our sample compromises two basic assumptions required for 

MLE; Multivariate normality and lack of correlation between observations (obviously membership 

in a particular Actor category conditions responses). 

6.2.2.2 Unweighted Least Squares Estimation (ULS) 

A possible solution to this problem would be the use of ULS.  This method produces parameter 

estimates such that the squared difference between sample covariances and model-implied 

covariances is minimized.  ULS does not require multivariate normality, but it requires 

homoscedasticity: that is, all elements of the covariance matrix must have the same variance.  

Furthermore, this method does not account for inter-correlation between elements of the 

covariance matrix (Bentler and Savalei, 2010). 

 

Because of these restrictive conditions, ULS is rarely used in the literature, and methods such as 

Asymptotic Distribution Free Estimation (ADF) and Weighted Least Squares Estimation (WLS) are 

preferred.  These are variants of ULS where various weights are applied to the squared difference 

between sample covariances and model-implied covariances.  These techniques do not require 

homoscedasticity, but a considerable sample size is needed to obtain consistent estimates in ADF 

(Bentler and Chou, 1987) and to correctly estimate the weighting matrix in WLS (Hutchinson and 

Olmos, 1998).  ULS, as an alternative to MLE, is supported by Morata-Ramirez and Holgado-Tello 

(2013) who show through simulations that ULS is best at maximizing model fit when analyzing 

measurement models where observed indicators are non-normally distributed and measured 

through Likert scales. 

6.2.2.3 Bootstrapping 

However, we keep MLE as our main estimation method, as it has been shown to be robust to 

assumption violation (Bentler and Savalei, 2010).  MLE has also been found to perform better than 

WLS in presence of non-normality and model misspecification (Olsson et al., 2000).  In order to 

counter the possible loss of accuracy arising from non-normality and small absolute sample size, 

we employ bootstrapping to calculate more precise standard errors and confidence intervals to 

test the significance of our estimates32. 

 

                                                 
31 The Wishart Distribution is the multidimensional equivalent of the Chi Square Distribution.  See Haff (1979). 
32 Available from the Authors but not reported due to space limitations. 
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Bootstrapping relies on the assumption that the actual statistical distribution of the data (F), is 

well approximated by the empirical distribution of the data in the sample ( ).  If this holds, 

drawing a random sample from a population with distribution F is equivalent to drawing a 

random sample from a population with distribution .  Parameter estimates, obtained from 

random sampling of a population with distribution , have thus the same value of estimates 

resulting from the actual population.  Furthermore, the distribution of those estimates closely 

approximates the distribution of the parameters in the population.  It is then possible to calculate 

accurate confidence intervals for our parameter estimates (Bollen and Stine, 1990). 

 

Bootstrapping creates an analogue of the population with distribution  by replicating 

observations a very large number of times (Diaconis and Efron, 1986).  A thousand samples of size 

identical to the original are then drawn from the original and the replicated observation.  The 

parameters of interest (in our case SEM coefficients) are then estimated for each sample. 

Bootstrapping in AMOS produces two kinds of confidence intervals: 

1) Percentile Confidence Intervals: given a particular parameter, its estimates in all the thousand 

samples are ranked by size.  We can then define, for example, the 95% confidence interval for 

the parameter as the continuum of values ranging from the 25th biggest estimate to the 975th 

biggest one (Singh and Xie, 2008). 

2) Bias Corrected Confidence Intervals: Percentile Confidence Intervals are most accurate when 

the parameter estimates are symmetrically distributed.  Bias Corrected Confidence Intervals 

incorporate a correction that increases statistical accuracy when parameter estimates are 

asymmetrically distributed. 

 

6.3  Model Evaluation 

The validity of a model is evaluated mainly by examining its fit to data, i.e. how closely the 

covariance matrix between indicators, implied by its assumption, approximates the sample 

covariance matrix.  Model fit can be evaluated in two ways (Bentler and Savalei, 2010): 

1. Statistically, that is through a formal statistical test of equality between the covariance matrix 

of the sample and the one predicted by the model. 

2. Practically, that is through descriptive statistics quantifying how well the covariance matrix 

implied by the model approximates the observed one. 

6.3.1  Testing Statistical Fit 

6.3.1.1 The Chi-Square Test of Statistical Fit 

If the model fits the data accurately and all standard SEM assumptions are reasonably well 

satisfied, or at least not violated in the extreme, the test statistic T, which is a positively dependent 

on sample size and on the observed discrepancy between the estimated covariance matrix and the 

sample one, follows the Chi Square distribution with k degrees of freedom (Bentler and Savalei, 

2010). 
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Where p is the number of variables in the model and q is the number of estimated parameters. 

 

If there is significant discrepancy between implied and sample covariances, the value of the  

statistic will increase, and the probability of observing such a value if the statistic follows the Chi 

Square distribution (i.e. if the model fits the data) will diminish.  The model is rejected if there is 

less than 5% probability of observing the value of its statistic when the model fits the data.  If the 

probability of observing such a value is between 5 and 10%, the model is not rejected, but its fit is 

considered merely adequate (Schermelleh-Engel et al., 2003; Bartels et al., 2006). 

6.3.1.2 Performance of the Chi-Square Test 

The Chi Square Test is the only statistical test for model fit (Barrett, 2007).  However, its precision 

depends on the assumption of multivariate normality of the data.  Furthermore, the test statistic 

gets smaller, and thus the probability of not rejecting the model increases, if the number of 

parameters in the model increases (Schermelleh-Engel et al., 2003).  The test statistic is also 

positively dependent on sample size, and thus tends to reject models because of small 

discrepancies with observed covariances in large samples (Mulaik et al., 1989; Barrett, 2007; 

Bentler and Savalei, 2010).  Finally, according to Steiger (2007), this test is unrealistic as T 

assumes a Chi Square distribution only if there is no discrepancy between implied and sample 

covariance, and small, trivial discrepancies can be considered inevitable in most models. 

6.3.1.3 Bollen-Stine Bootstrapping 

To improve performance of the Chi Square test with non-normality and large sample size, Bollen 

and Stine (1992, 1993) propose the following technique: 

1. Modification of the original sample so that the model fits the data. 

2. Bootstrapping on the modified sample, calculating the T statistic for each replicated sample, 

and thus estimating , the bootstrapped distribution of T. 

Bollen and Stine (1993) prove that  approximates the population distribution that T would have 

if the null hypothesis were true.  We therefore do not reject the model if our original test statistic T 

is smaller than, or equal to, the average of T obtained from the replicated samples. 

6.3.2  Indicators of Practical Fit 

The problems of the Chi Square Test, which often lead to model rejection with trivial 

misspecification, have led to the creation of descriptive fit statistics that provide information on 

how well the model approximates sample covariance, and thus fits the data.  The presentation of 

these fit indicators follows those by Schermelleh-Engel et al., (2003) and Schreiber et al., (2006). 

6.3.2.1 Absolute/Predictive Fit Indices 

1. T/df ratio: this ratio should be close to one;  is the expected value of  if the model fits the 

data.  In practice, values between two and three are considered indicative of 

acceptable/adequate fit (Schermelleh-Engel et al., 2003; Schreiber et al., 2006).  It is sensitive 



 32 

to sample size33 and to the number of indicators per factor (Marsh et al., 1998), but it performs 

well in presence of slight misspecification in the measurement model (Beauducel and 

Wittmann, 2005). 

2. Akaike Information Criterion (AIC): formulated as: .  It is a modification of the 

Chi Square Test Statistic that favours parsimonious models34.  It is useful in model comparison; 

the model with the lowest AIC is the one with the best fit (Schermelleh-Engel et al., 2003). 

6.3.2.2 Comparative Fit Indices 

6.3.2.2.1 Characteristics of Comparative Fit Indices 

The purpose of comparative fit indices is quantifying how well the model approximates sample 

covariance, compared to a more restrictive specification.  The starting formula for most of these 

indices is (Schermelleh-Engel et al., 2003): 

 
Where  is the Chi Square Statistic for the target model (i.e. our specification) and  is the Chi 

Square Statistic for the more restrictive baseline model.  For all these indices, values close to one 

indicate good fit.  There are two types of baseline models: 

1) The null model ( ), where all parameters are set to zero. 

2) The independence model ( ), where all variables are assumed to be measured without error 

and uncorrelated (that is, where only their variances are estimated). 

The basic fit index using the null model as a baseline is the Goodness of Fit Index (GFI), which has 

the formula above.  As it is based on the Chi-Square statistic, it is sensitive to over-

parametrisation; two modifications of GFI, the Adjusted GFI (AGFI) and the Parsimonious GFI 

(PGFI), correct for this problem.  AGFI uses the Chi-Square/Degrees of Freedom ratio in place of T, 

while PGFI multiplies GFI by the ratio of the degrees of freedom of the target and of the null model 

( ).  Barrett (2007) criticizes the use of the null model as a baseline, since even a 

misspecified model can represent a great improvement on no model at all. 

 

A second group of indices correct for this by using the independence model as a baseline.  The 

fundamental index of this group is the Normed Fit Index (NFI), which follows the starting formula 

above.  The NFI has, for the same motivations, similar parsimony problems of the GFI; the 

Parsimonious NFI (PNFI) corrects the problem by multiplying NFI by ( ).  NFI has other 

three modifications; the Non-Normed Fit Index35 (NNFI), the Incremental Fit Index (IFI) and the 

Relative Fit Index (RFI).  The first adjustment has the aim of improving NFI performance for 

values near 1, the second reduces the variance of NFI and increases its precision by adding  to 

its denominator, while the RFI accounts for sample size dependency by substituting T/df to T 

(Hammervold and Olsson, 2012). 

 

                                                 
33 But some simulation studies, like those of Ding et al., (1995) allege that it is insensitive to sample size if no misspecification is present. 
34 I.e. models with a low number of parameters (q). 
35 Also known as the Tucker-Lewis Index (TLI). 
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The last Comparative Fit Index, the CFI, is based on a different principle.  In case of misfit, the T 

statistic follows a non-central Chi Square distribution.  This distribution is characterised by the 

non-centrality parameter , which is directly proportional to the discrepancy between implied 

and sample covariance. CFI estimates the change in , and thus the improvement in fit, obtained 

by going from the independence model to the target model36 (Bentler, 1990; Schermelleh-Engel et 

al., 2003).  Its formula is: 

 
Where  is used as an estimator of the non-centrality parameter, since, when the model is 

true and T follows the usual central Chi Square Distribution, we expect to have, on average, 

. 

6.3.2.2.2 Performance of Comparative Fit Indices 

Various simulation studies and theoretical analyses show that no index of this class can be used on 

its own in all circumstances; their results are summed up in table 7 below. 

 

Table 7: Performance Problems of Comparative Fit Indices 

Index Study Problem 

NFI 

Ding et al., (1995) NFI is negatively affected by the number of 

indicators per factor. 

La Du and Tanaka (1989) NFI doesn't detect trivial model misspecification. 

Schermelleh-Engel et al., (2003) NFI is sensitive to sample size. 

NNFI 

Beauducel and Wittmann (2005) NNFI is too sensitive to trivial distortions in the 

measurement model. 

Ding et al., (1995) NNFI is negatively affected by the number of 

indicators per factor. 

IFI 
Beauducel and Wittmann (2005) IFI is too sensitive to trivial distortions in the 

measurement model. 

RFI Hutchinson and Olmos (1998) RFI is too sensitive to non-normality. 

GFI 

Hu and Bentler (1999) GFI is too sensitive to variations in sample size and 

to violations of MLE assumptions. 

Schermellehh-Engel et al., (2003) GFI improves automatically if the number of model 

parameters increases. 

AGFI 
Mulaik et al., (1989) AGFI can be undefined or have negative values in 

some situations. 

 

 

 

 
                                                 
36  indicates an estimate of . 
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6.3.3  Descriptive Measures of Model Fit 

6.3.3.1 The Root Square Mean Error of Approximation (RMSEA) 

The main assumption behind the RMSEA is that, since every theoretical model represents an 

abstraction from reality, it will never be able to fit perfectly a real dataset (Steiger, 2007).  This 

explains the high occurrence of model rejection with the Chi-Square test37 (which has perfect fit as 

the null hypothesis).  It also implies that, on average, there will always be a positive discrepancy 

(approximation error) between the population covariance matrix and the one implied by the 

model.  This discrepancy will follow a non-central Chi Square distribution with a non-centrality 

parameter  if (MacCallum et al., 1996): 

a) All the SEM assumptions detailed above hold. 

b) Approximation errors have the same magnitude of the estimation errors. 

Given , an estimator for , we have that (Bentler and Savalei, 2010): 

 
Given that =  (where N is sample size and  is an estimator of , the discrepancy 

between the population covariance matrix and the one implied by the model) and F, the 

discrepancy between the implied covariance matrix and the sample one, it can be proven that 

 
is an unbiased estimator of .  The practical formula for RMSEA is thus (Schermelleh-Engel et al., 

2003): 

 
This formulation avoids negative values, which are unrealistic, since the error of approximation is 

always expected to be positive.  A non-truncated formulation is used to calculate the confidence 

interval of RMSEA (Steiger, 2000). 

 

RMSEA values of 0.05 and below are considered indicators of good fit, while values between 0.05 

and 0.08 indicate an “adequate” (MacCallum et al., 1996) or “acceptable” fit.  These cutoff values 

were proposed by Browne and Cudeck (1993), on the basis of the results of various simulation 

studies (MacCallum et al., 1996).  MacCallum et al. (1996) provides a rationale for the use of 

confidence intervals for RMSEA; if all the assumptions indicated above are respected, the 

statistical distribution of the RMSEA is known, thus allowing us to test the consistency of our 

RMSEA value with the null hypothesis of approximate fit.  Multivariate normality is needed for this 

result to be valid.  However, RMSEA and its confidence interval do not lose meaning when applied 

                                                 
37 Note that Barrett (2007) claims that the Chi-Square test allows for trivial discrepancies by rejecting only the T statistics whose probability of 
being compatible with the model is smaller than a 5% threshold.  Steiger (2007) counters this claim by stressing that the Chi Square test remains 
flawed because of its unrealistic premise (the null hypothesis of perfect fit). 
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to our strictly-speaking non-normal sample, since simulation studies have shown that RMSEA is 

robust to non-normality (Andreassen et al., 2006).  RMSEA is also not sensitive to trivial 

misspecification in measurement models (Beauducel and Wittmann, 2005). 

6.3.3.2 Root Mean Residual (RMR) and Standardized Root Mean Residual (SRMR) 

The RMR and the Standardized38 RMR represent the average value of an element of the matrix of 

discrepancies between implied and sample covariances (Schermelleh-Engel et al., 2003).  RMR 

and SRMR are purely descriptive measures of fit.  They tend to be unduly influenced by outliers 

(Bentler and Savalei, 2010). 

6.3.4  Combined Use of Fit Indices 

Following the above, we conclude that each fit index has particular strengths and weaknesses.  

The use of particular combinations of indices has therefore been proposed, with the aim of 

increasing analytical precision.  A simulation study by Hu and Bentler (1999) is an influential 

work in the field: they test the adequacy of their combinations of indices through simulations on 

true and misspecified confirmatory factor analysis models.  Their main results are: 

 SRMR is sensitive to covariance discrepancies, while other indices are more sensitive to errors 

in the coefficients. 

 In general, values of TLI and CFI close to 0.96 and SRMR close to 0.09 are best in minimising 

the probability both of model over-rejection and of not rejecting a misspecified model.  With 

sample sizes smaller than 250 the incidence of over-rejection increases, and more lenient 

cutoffs should be used. 

The cutoffs proposed by Hu and Bentler (1999) are popular, but they have been questioned by 

Marsh et al., (2004), for tending to over-reject models with a high number of indicators per factor, 

and by Fan and Xivo (2005) for not accounting for the severity of model misspecification. 

6.3.5  Current Best Practices for Model Evaluation 

Despite being very common in applied research, the use of ‘Golden Rules’, ‘rules-of-thumb’ or 

heuristics to determine model fit is strongly discouraged by the literature (Mulaik et al., 1989; 

Mulaik and Millsap, 2000; Fan and Xivo, 2005; Bentler and Savalei, 2010).  The current best 

practice in model evaluation is to examine contemporaneously the values of all available fit 

indices, also taking into account the validity of the assumptions (both statistical and theoretical) 

and the theoretical soundness of the results (Marsh et al., 2004).  Literature Reviews such as 

Schermelleh-Engel et al., (2003) and Schreiber et al., (2006), present cutoffs for various indices, 

which should be seen as orientative criteria for fit evaluation.  We report them in table 8 

 

 

 

 

 

 

                                                 
38That is, divided the standard deviation of the manifest variables. 
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Table 8: Cutoff Values for Fit Indices 

Fit Measure Good Fit Acceptable Fit
Good Fit

(Categorical Data)

P-Value

(Chi Square)
0.05<p≤1 0.01≤p≤0.05

T/df 0≤T/df≤2 2<T/df≤3

RMSEA 0≤RMSEA≤0.05 0.05<RMSEA≤0.08 Smaller than 0.06

P-Value

(RMSEA)
0.10<p≤1 0.05≤p≤0.10

SRMR 0≤SRMR≤0.05 0.05<SRMR≤0.10

NFI 0.95≤NFI≤1 0.90≤NFI<0.95

NNFI (TLI) 0.97≤NNFI≤1 0.95≤NNFI<0.97 Close to 0.96

CFI 0.97≤CFI≤1 0.95≤CFI<0.97 Close to 0.95

IFI 0.95<IFI≤1 IFI close to 0.95

GFI 0.95≤GFI≤1 0.90≤GFI<0.95

AGFI 0.90≤AGFI≤1 0.85≤AGFI<0.90

AIC
Smaller than AIC for Comparison

Model

 
 

Bentler and Savalei (2010) also recommend direct inspection of the matrix of the standardised 

discrepancies between implied and sample covariances as a model evaluation tool.  According to 

Hair et al., (2010), the presence of standardized discrepancy with a value higher than four 

indicates nontrivial misfit.  Due to the fact that the evaluation of a model’s assumptions and of its 

fit indices always entails a certain level of discretionality, some authors consider model cross-

validation in a different sample to be the final test of model validity (Barrett, 2007; Bollen and 

Pearl, 2013). 

 

6.4  The Model 

Our baseline model can be visualized in the path diagram Figure 3: Path Diagram for GNSI Model 

(Baseline Model 1) below 39. 

6.4.1 Issues related to Model Identification 

A model is identified if it has enough observed indicators to estimate its parameters.  Most of our 

latent constructs have at least three observed indicators, and are therefore at least just identified. 

The following Constructs are however under-identified: 

1. ICT Capability/Capacity (B1); 

2. Deficient Fiscal Policy (B3); 

3. Knowledge-Based Innovation Capability (E2); 

4. ICT diffusion (C3); and 

5. Arbitrageurs — Business Enterprise Inter-Linkages (C5). 

                                                 
39 Equivalent to Figure 2. 
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An under-identified model can be estimated only if it is linked to other latent variables.  This 

creates the risk of interpretational confounding; the behavior of the under-identified construct is 

determined by the factors to which it is linked, and not by its indicators (Hair et al., 2010).  

According to Burt (1976) there is no risk of interpretational confounding if: 

1) There is high inter-correlation between the indicators of the under-identified construct. 

2) The covariances of the indicators of the under-identified construct with the other indicators, 

denominated communalities in EFA Theory (Hair et al., 2010), are high. 

These two conditions hold for most of our under-identified constructs: 

 The indicators of B1 and B3 have communalities above 0.78 and 0.57, respectively. 

 The indicators of E2 have communalities above 0.67. 

 The indicators of C5 have communalities above 0.61. 
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Figure 3: Path Diagram for GNSI Model (Baseline Model 1)
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One indicator of C3 (qc014) has a communality of 0.449, but we retain it in the analysis (since the 

other indicator has a communality of 0.83) in order to test the pattern suggested by EFA results. 

6.4.2  Hypotheses on the Measurement Models 

We expect factor loadings to be positive and significant in all our measurement models, that is: 

1) We expect item scores to increase when the values of the constructs increase. 

2) We expect our observed variables to be good indicators of our latent constructs. 

We also expect the coefficients for the paths between first order factors and second order factors 

(namely Connectedness, Barriers to Innovation and GNSI Efficacity) to be positive and significant. 

6.4.3  Hypotheses on the Structural Model 

From NSI literature, theory and empirics we derive the following hypotheses about the 

relationships between our second-order latent constructs (structural model): 

1) The path coefficient between Connectedness and GNSI Efficacity is positive and significantly 

different from zero. 

2) The path coefficient between Barriers to Innovations and GNSI Efficacity is negative and 

significantly different from zero. 

3) A negative and significant correlation between Connectedness and Barriers to Innovation. 

 

6.5  Estimation and Results 

6.5.1  Results 

6.5.1.1 Model Coefficients and Covariances 

Table 9: Coefficients for the Structural Model and loadings for second order factors 
Estimate S.E. C.R. P

GNSI EFFICACITY <--- CONNECTEDNESS 0,573 0,117 4,914 ***

GNSI EFFICACITY <--- BARRIERS TO INNOVATION -0,077 0,074 -1,034 0,301

C1 <--- CONNECTEDNESS 1

C2 <--- CONNECTEDNESS 0,854 0,111 7,69 ***

C4 <--- CONNECTEDNESS 1,214 0,117 10,394 ***

C3 <--- CONNECTEDNESS 0,278 0,077 3,618 ***

C5 <--- CONNECTEDNESS 0,941 0,118 7,991 ***

B4 <--- BARRIERS TO INNOVATION 0,678 0,128 5,276 ***

B5 <--- BARRIERS TO INNOVATION -0,341 0,091 -3,734 ***

B2 <--- BARRIERS TO INNOVATION 0,613 0,131 4,661 ***

B3 <--- BARRIERS TO INNOVATION 0,342 0,09 3,818 ***

B1 <--- BARRIERS TO INNOVATION 1

E2 <--- GNSI EFFICACITY 0,896 0,204 4,384 ***

E1 <--- GNSI EFFICACITY 1  
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Table 10: Covariance between Connectedness and Barriers 

Estimate S.E. C.R. P

BARRIERS TO INNOVATION <--> CONNECTEDNESS 0,025 0,036 0,709 0,478  
 

The coefficients in the measurement models (omitted here due to space constraints) are 

consistent with NSI theory and are all significant at the one percent level.  The path coefficients 

between first and second-order latent constructs are also all significant at the one percent level; 

most of them are consistent with theory, apart for the negative coefficient for factor B5 (Deficient 

Human Capital), which would lead the negative impact of lack and quality of technically trained 

manpower to decrease when “Barriers to Innovation” increases.  This problem is due to low factor 

consistency40: the behavior of factor B5 is influenced by “Adequacy of Human Resources” (qc012), 

its indicator with the highest loading, which ranges from one (completely inadequate) to five 

(highly adequate), while the other two indicators range from one (the variable is a low constraint 

to innovation) to five (the variable is a very high constraint to innovation). 

 

With respect to the structural model, the positive and significant path between “Connectedness” 

and “GNSI Efficacity” is consistent with theory.  The estimate of the path coefficient between 

“Barriers to Innovation” and “GNSI efficacity” is negative, as expected, but not significantly 

different from zero.  The covariance between “Connectedness” and “Barriers to Innovation” is also 

not significant. 

 

In order to control for non-normality and small sample size, we produce bootstrapped standard 

errors and confidence intervals for our ML estimates: our previous results are confirmed (albeit 

only at 5% significance level). 

6.5.1.2  Model Fit 

Table 11: Fit Indices 

NFI RFI IFI TLI CFI RMSEA P (RMSEA) SRMR Chi Sq T/df Ratio P Value (Chi) AIC

0,707 0,681 0,807 0,787 0,808 0,076 0,000 0,084 3335,219 2,357 0,000 3695,219

Maximum Likelihood

 
The Chi Square Test rejects the null hypothesis of good fit.  Furthermore, most of our fit indices do 

not reach the conventional cutoffs for adequate fit, except for the RMSEA and the T/df ratio 

(Schermelleh-Engel et al., 2003).  With the aim of verifying whether the test result is invalid 

because of non-normality or sample size, we apply the Bollen-Stine Bootstrap, which confirms 

model rejection.  We therefore inspect the matrix of standardized residuals and notice that, 

despite the fact that most discrepancies have an absolute value lower than four, there is evidence 

of nontrivial misfit. 

 

                                                 
40Attested by its Cronbach’s Alpha. 
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In order to verify whether the problem is caused by a violation of the data continuity assumption, 

we reestimate the model using ULS (Morata-Ramirez and HolgadoTello, 2013).  Coefficient 

estimates from ULS41 are slightly different than those from MLE; however they are essentially the 

same in terms of sign and significance.  With respect to fit indices, ULS estimation gives improved 

results, however some indices fall short of conventional cutoffs.  Furthermore, following, 

respectively, Mulaik et al., (1989) and Hu and Bentler (1999), we do not attribute high importance 

to high AGFI and GFI values. 

6.5.2  Measurement Model Respecification 

We verify whether measurement model misspecification is a cause of misfit by using the results of 

EFA with forcing of the number of factors to structure an alternative SEM model (Figure 4 below).  

The measurement model of the respecified SEM posits that: (i) GNSI Efficacity is measured by the 

Factors; Fiscal and Monetary Incentives (E1), Knowledge-based Innovation Capability (E2), and 

Standards and Regulatory Incentives (E3)(H3); (ii) (Actor) Connectedness is measured by Factors; 

KBIs — Intermediary Inter-linkages (C1), Actor Intra-linkages (C2), ICT Diffusion (C3), 

Government — Intermediary Inter-linkages (C4), Arbitrageurs — Business Enterprise Inter-

linkages (C5) and Arbitrageurs — KBIs Inter-linkages (C6) (H4); (iii) Barriers to Innovation are 

measured by Factors; ICT Capability/Capacity (B1), Unsophisticated Markets (B2), Deficient Fiscal 

Policy (B3), Reduced Organisational Risks (B4), and Deficient Human Capital (B5) (H5); and (iv) 

there is a non-recursive relationship between (Actor) Connectedness and Barriers to Innovation 

(H6). 

 

                                                 
41 Bootstrapping was used to obtain standard errors and confidence intervals. 
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Figure 4: Path Diagram for the second GNSI Model (Model 2) 
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6.5.2.1 Model Coefficients and Covariances 

Table 12: Coefficients for the Structural Model and loadings for second order factors 
Estimate S.E. C.R. P

GNSI EFFICACITY <--- CONNECTEDNESS 0,461 0,095 4,86 ***

GNSI EFFICACITY <--- BARRIERS TO INNOVATION 0,016 0,104 0,155 0,877

B4 <--- BARRIERS TO INNOVATION 0,673 0,129 5,23 ***

B2 <--- BARRIERS TO INNOVATION 0,606 0,131 4,641 ***

B3 <--- BARRIERS TO INNOVATION 0,337 0,089 3,798 ***

B1 <--- BARRIERS TO INNOVATION 1

C1 <--- CONNECTEDNESS 1

B5 <--- BARRIERS TO INNOVATION -0,334 0,09 -3,721 ***

C2 <--- CONNECTEDNESS 0,665 0,089 7,464 ***

C3 <--- CONNECTEDNESS 0,935 0,092 10,187 ***

C6 <--- CONNECTEDNESS 1,001 0,076 13,216 ***

E1 <--- GNSI EFFICACITY 1

E2 <--- GNSI EFFICACITY 0,29 0,062 4,674 ***

E3 <--- GNSI EFFICACITY 1,069 0,112 9,565 ***

C4 <--- CONNECTEDNESS 0,913 0,084 10,802 ***

C5 <--- CONNECTEDNESS 0,907 0,091 9,956 ***  
 

Table 13: Covariance between Connectedness and Barriers 

Estimate S.E. C.R. P

BARRIERS TO INNOVATION <--> CONNECTEDNESS 0,027 0,042 0,65 0,515  
The coefficients in the measurement models (omitted here) are consistent with NSI theory and are 

all significant at the one percent level.  The path coefficients between first and second-order latent 

constructs are also all significant at the one percent level and consistent with theory, except for 

B5.  Our previous results for the structural model are confirmed by MLE estimation (at the 5% 

significance level), bootstrapping and ULS (with slight changes in coefficient values). 

6.5.2.2 Model Fit 

Table 14: Fit Indices 

NFI RFI IFI TLI CFI RMSEA P (RMSEA) SRMR Chi Sq T/df Ratio P Value (Chi) AIC

0,740 0,726 0,844 0,835 0,843 0,069 0,000 0,094 2747,938 2,101 0,000 3099,938

Maximum Likelihood

 

NFI PNFI RFI GFI AGFI PGFI RMR

0,929 0,882 0,926 0,941 0,936 0,861 0,087

Bootstrapped ULS

 
After respecification fit indices for MLE improve, but remain still unsatisfactory, except for RMSEA 

and the T/df ratio, which indicate adequate fit.  The inspection of the matrix of standardised 

residuals reveals the presence of discrepancies with absolute value bigger than four and thus the 

persistence of misfit. 
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6.5.3  Measurement Model Further Respecification 

6.5.3.1 Elimination of Constructs with Low Reliability 

Jackson’s (2001) simulation study claims that low factor reliability can negatively affect model fit 

and the precision of coefficient estimates.  We therefore remove from the model Factor B5 

(Deficient Human Capital), because of its unacceptable Cronbach’s Alpha (0.245), obtaining Model 

3.  The model is still unsatisfactorily fitting to the data and we only obtain improper solutions42 for 

ULS.  We nonetheless observe some improvement in fit indices (see table 12).  MLE coefficient 

estimates (with bootstrapped standard errors and confidence intervals) confirm our previous 

results for both the structural and the measurement models. 

6.5.3.2 Elimination of Marginal Latent Constructs 

Our model modifications not having significantly reduced misfit calls for further measurement 

model respecification.  The structural model remains unchanged, since it has a solid grounding in 

NSI literature.  With respect to the measurement model for Connectedness, we notice that Factors 

C1 and C2 measure more than 58.9% of the total variance, while all other Factors have altogether 

a much lower explanatory power (17.6%).  The indicators of those factors, while being only 

marginally relevant to the model, might introduce misfit through spurious and theoretically 

irrelevant correlation with other indicators. 

 

We therefore decided to gradually remove these Factors and their indicator variables from the 

model, starting with the ones with the lowest impact on total variance.  This procedure could lead 

us to accept a misspecified model: some of our fit indices, like RMSEA, AIC and the T/df ratio, are 

parsimony-adjusted and should automatically improve if the number of parameters to estimate 

decreases.  However: 

a) All the other indices reported are not parsimony-adjusted and should detect misspecification 

arising from our procedure43. 

b) According to a simulation study by Olsson et al., (2000), RMSEA detects model misspecification 

arising from the omission of model parameters, despite its parsimony adjustment. 

 

Furthermore, a reduction in estimated parameters implies that fewer elements of the covariance 

matrix are used for parameter estimation; more sample information can thus be used to compute 

fit statistics, thus increasing their accuracy and their ability to detect misspecification.  Our 

procedure should therefore facilitate model rejection if misspecification arises. 

6.5.3.3 Results 

Table 15: Fit Indices after eliminating inconsistent and irrelevant Factors44. 

                                                 
42 I.e. with negative variances.  We had this problem for all models not containing Factor B5.  We tried to follow normal SEM practice by 
constraining them to zero, but the problem simply reappeared with other variables.  Therefore we decided to neglect the analysis of ULS estimates 
for the models concerned, also on the basis of our literature on the robustness of MLE to non-normality and on the opportunity of treating discrete 
variables as continuous ones. 
43 Mulaik et al., (1989) show that non-parsimony-adjusted indices tend to improve with lower model parsimony.  This increases their ability to 
detect misspecification arising from our procedure. 
44 Note that in model 6 we obtained an improper solution (negative variance).  The problem was solved by setting the variance to zero. 
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MODEL NFI RFI IFI TLI CFI RMSEA P (RMSEA) SRMR Chi Sq T/df Ratio P Value (Chi) AIC

Model 3 

(Model 2 minus B5) 0,752 0,738 0,851 0,842 0,850 0,070 0,000 0,092 2464,172 2,126 0,000 2796,172

Model 4

(Model 3 minus C5, C6 and C7) 0,787 0,773 0,879 0,869 0,878 0,067 0,000 0,082 1645,160 2,044 0,000 1841,160

Model 5 

(Model 4 minus C4) 0,806 0,792 0,895 0,887 0,894 0,064 0,000 0,082 1342,646 1,946 0,000 1600,646

Model 6

(Model 5 minus C3) 0,855 0,842 0,942 0,936 0,941 0,050 0,536 0,074 759,328 1,572 0,000 981,328

Maximum Likelihood

 
We notice an improvement in all fit indices, including the non-parsimony-adjusted ones.  In model 

6 IFI, TLI and RMSEA come close to conventional cutoffs for acceptable fit.  With respect to 

coefficient estimates, MLE estimation and the computation of bootstrapped standard errors and 

confidence intervals confirm our previous results. 

6.5.4  Final Measurement Model (Model 7) 

6.5.4.1 Analysis of Modification Indices for Measurement Model 6 

In order to improve the model further, we analyze modification indices for model 6.  Modification 

Indices (MI) estimate the improvement in the Chi Square statistic that can be obtained by adding 

covariances or path coefficient between two variables to the model.  Some authors (Hayduk and 

Glaser, 2000; Barrett, 2007) discourage the use of MI in model respecification, claiming that it 

denatures the confirmatory character of SEM.  Most authors however allow the use of MI, 

provided that it is parsimonious and consistent with theory (Hair et al., 2010). 

 

We analyzed MI for possible covariances between errors in the measurement model (see table 

13).  We individuated the following covariances, which would affect fit significantly and have a 

theoretical rationale: 

1) The covariance between the error terms of variables c306 and c307 (ec3 and ec1), measuring 

the strength of linkages between HE and, respectively, ARB and FI.  We expect the 

measurements of the linkages between the same Actor (HE) and other two Actors with an 

analogous intermediation function to be correlated. 

2) The covariance between the error terms of variables c1707 and c1708 (ee8 and ee6), 

measuring the perceived success, respectively, of regulation and standard setting in promoting 

innovation.  The covariance is justified by substantial affinity and proximity in the targets and 

in the application of these two policy interventions. 

 

Our final model, incorporating these two covariances, is shown in figure 5 below. 

6.5.4.2 Results 

6.5.4.2.1 Model Fit 

Table 16: Fit Indices for the Final Model 7 

NFI RFI IFI TLI CFI RMSEA P (RMSEA) SRMR Chi Sq T/df Ratio P Value (Chi) AIC

0,863 0,850 0,950 0,945 0,950 0,046 0,832 0,073 717,265 1,491 0,000 943,265

Maximum Likelihood
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The Chi Square Test rejects the model.  However IFI, TLI, CFI and SRMR reach conventional cutoffs 

for acceptable fit, while RMSEA indicates good fit.  Inspection of the matrix of standardised 

residuals shows that no discrepancy has an absolute value higher than four.  This leads us to claim 

that model fit has to be considered at least adequate. 
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Table 17 (1st part): Modification Indices for Model Covariances 

M.I. Par Change

z2 <--> CONNECTEDNESS 15,582 0,147

c2e <--> z1 4,086 0,08

c1e <--> z2 19,926 0,166

b3e <--> CONNECTEDNESS 18,131 -0,124

b3e <--> z2 11,077 -0,084

b3e <--> c2e 4,242 0,066

b3e <--> c1e 30,632 -0,16

b4e <--> c2e 5,735 -0,078

b4e <--> c1e 12,014 0,102

be7 <--> CONNECTEDNESS 4,34 -0,081

be7 <--> b2e 5,224 -0,094

be6 <--> CONNECTEDNESS 7,09 -0,089

be6 <--> z2 9,266 -0,089

be6 <--> c2e 4,949 0,082

be6 <--> c1e 19,763 -0,149

ec17 <--> b2e 4,424 0,081

ec17 <--> ec19 6,541 0,094

ec16 <--> be6 4,881 -0,069

ec15 <--> zw1 4,221 0,047

ec2 <--> b1e 4,617 0,074

ec2 <--> be6 7,132 -0,066

ec2 <--> ec16 6,487 0,075

ec2 <--> ec15 4,435 -0,052

ec3 <--> zw1 11,735 -0,07

ec3 <--> ec1 16,841 0,094

ec3 <--> ec2 13,157 0,08

ec4 <--> ec3 8,703 -0,057

ec5 <--> zw1 9,926 0,064

ec5 <--> ec16 4,763 -0,061

ec5 <--> ec2 14,654 -0,083

ec10 <--> ec2 5,956 -0,057

ec10 <--> ec4 8,22 0,059

ec10 <--> ec5 5,884 0,053

be2 <--> ec4 4,5 -0,04

be2 <--> ec10 5,368 -0,049

be5 <--> b1e 5,465 0,124

be4 <--> ec15 8,783 -0,092

be4 <--> ec10 6,53 0,075

be3 <--> c2e 4,647 0,096

be3 <--> be7 6,123 -0,092

be11 <--> c2e 12,316 -0,179

be11 <--> c1e 4,495 0,098

be11 <--> ec2 4,067 0,069

be11 <--> be5 5,521 0,124  
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Table 18 (Part 2): Modification Indices for Model Covariances 

M.I. Par Change

be9 <--> ec3 4,186 -0,059

be9 <--> ec4 4,139 0,054

be9 <--> be3 5,614 -0,092

ee12 <-->

CONNECTEDNE

SS 7,717 0,123

ee12 <--> c1e 11,839 0,152

ee12 <--> b3e 8,02 -0,086

ee12 <--> be6 6,134 -0,086

ee12 <--> ec4 8,71 0,086

ee12 <--> be2 4,508 -0,063

ee12 <--> be3 5,871 -0,102

ee11 <--> ec1 5,662 0,068

ee11 <--> ec5 4,057 0,052

ee10 <--> z3 4,431 0,07

ee10 <--> z2 5,875 0,09

ee10 <--> z1 5,93 -0,087

ee10 <--> ec5 5,989 0,073

ee7 <--> z3 6,132 -0,076

ee7 <--> z1 10,485 0,108

ee6 <--> z1 7,17 -0,066

ee6 <--> ee8 11,306 0,072

ee5 <-->

BARRIERS TO 

INNOVATION 6,606 0,069

ee5 <--> z3 5,565 -0,063

ee5 <--> z1 10,98 0,096

ee5 <--> b1e 6,449 0,096

ee5 <--> b2e 5,038 -0,082

ee5 <--> b4e 6,27 0,06

ee5 <--> ee10 4,718 -0,075

ee4 <--> be9 4,593 -0,071

ee4 <--> ee10 10,525 -0,112

ee4 <--> ee5 4,879 0,062

ee3 <--> b2e 4,249 0,075

ee3 <--> zw1 4,092 0,048

ee3 <--> ee11 5,121 -0,068

ee3 <--> ee10 4,044 0,069

ee2 <--> b2e 4,852 -0,075

ee2 <--> ec5 9,613 -0,07

ee2 <--> be4 6,706 -0,077

ee2 <--> ee10 4,665 -0,069

ee2 <--> ee4 18,587 0,109

ee2 <--> ee3 5,042 -0,057

ee1 <--> c2e 10,102 0,127

ee1 <--> ec15 7,029 0,076

ee1 <--> ee7 5,789 0,082
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Figure 5: Path Diagram for the Final Model (Model 7)
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6.5.4.2.2 Model Coefficients and Covariances 

Table 19: Coefficients for the Structural Model and loadings for second order Factors 
Estimate S.E. C.R. P

GNSI EFFICACITY <--- CONNECTEDNESS 0,652 0,232 2,813 0,005

GNSI EFFICACITY <--- BARRIERS TO INNOVATION 0,008 0,141 0,057 0,954

B4 <--- BARRIERS TO INNOVATION 0,999 0,258 3,877 ***

B2 <--- BARRIERS TO INNOVATION 0,775 0,177 4,385 ***

B3 <--- BARRIERS TO INNOVATION 0,42 0,115 3,647 ***

B1 <--- BARRIERS TO INNOVATION 1

C1 <--- CONNECTEDNESS 1

C2 <--- CONNECTEDNESS 0,792 0,259 3,058 0,002

E1 <--- GNSI EFFICACITY 1

E2 <--- GNSI EFFICACITY 0,265 0,061 4,379 ***

E3 <--- GNSI EFFICACITY 0,999 0,113 8,806 ***  
Table 20: Estimated Covariances for Model 7 

Estimate S.E. C.R. P

BARRIERS TO INNOVATION <--> CONNECTEDNESS 0,028 0,038 0,753 0,452

ec3 <--> ec1 0,109 0,029 3,819 ***

ee6 <--> ee8 0,162 0,039 4,143 ***  
 

The coefficients in the measurement models (omitted here) are consistent with NSI theory and 

are all significant at the one percent level.  The path coefficients between first and second-

order latent constructs are also all significant at the one percent level, except for C2, significant 

at the 5% level, and consistent with theory.  Results for the structural model confirm our 

previous findings, which are shown to be extremely robust to model respecification.  Our 

conclusions do not change with the computation of bootstrapped standard errors and 

confidence intervals, which can be seen in tables 21 and 22 below; path coefficients between 

our first and second-order factor are significant at the 5% level, while the path coefficient 

between Connectedness and GNSI Efficacity is significant at the 10% level. 

 

Table 21: Bootstrapped Bias Corrected Confidence Intervals for the Structural Model 
Estimate Lower Upper P

GNSI EFFICACITY <--- CONNECTEDNESS 0,652 0,03 1,148 0,006

GNSI EFFICACITY <--- BARRIERS TO INNOVATION 0,008 -0,501 0,309 0,918

B4 <--- BARRIERS TO INNOVATION 0,999 0,55 3,463 0,001

B2 <--- BARRIERS TO INNOVATION 0,775 0,353 1,432 0,002

B3 <--- BARRIERS TO INNOVATION 0,42 0,155 0,724 0,002

B1 <--- BARRIERS TO INNOVATION 1 1 1 ...

C1 <--- CONNECTEDNESS 1 1 1 ...

C2 <--- CONNECTEDNESS 0,792 0,125 1,711 0,003

E1 <--- GNSI EFFICACITY 1 1 1 ...

E2 <--- GNSI EFFICACITY 0,265 0,137 0,413 0,002

E3 <--- GNSI EFFICACITY 0,999 0,786 1,426 0,001

Parameter
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Table 22:Bootstrapped Bias Corrected Confidence Intervals for Covariances (Model 7) 

Estimate Lower Upper P

BARRIERS TO INNOVATION <--> CONNECTEDNESS 0,028 -0,067 0,123 0,455

ec3 <--> ec1 0,109 0,046 0,179 0,003

ee6 <--> ee8 0,162 0,056 0,316 0,001

Parameter

 
 

7. Findings and Discussion 

The fit indices for final model (7), together with the robustness of our structural model to 

measurement model respecification, make us strongly confident that it is at least an adequate 

representation of the GNSI. 

Our results are: 

Normed fit index (NFI) 0.863 (Acceptable fit 0.9 0.95)1 

Relative fit index (RFI) 0.850 (Acceptable fit  0.9)2 

Incremental fit index (IFI) 0.950 (Acceptable fit  0.95)1 

Non-nonmed fit index (NNFI [TLI]) 0.945 (Acceptable fit 0.95 NNFI 0.97)1 

Comparative fit index (CFI) 0.950 (Acceptable fit 0.95 CFI 0.97)1 

Root mean square error of approximation 

(RMSEA) 

0.046 (Acceptable fit 0.05 RMSEA 

0.08)1 

Square root mean residual (SRMR) 0.073 (Acceptable fit 0.05 SRMR 0.10)1 

p-value Chi square 0.000 (Acceptable fit 0.01 p 0.005)1 

T/f ratio 1.491  (Good fit 0  T/f 2)1 
1 Schermelleh-Engel et al., (2003) 
2 Bartels et al., (2006) 

 

Therefore our SEM fits acceptably the data.  Our hypotheses are supported (or not) as follows: 

1. Regarding the Structural Model 

a. The GNSI Efficacity is significantly determined (coeff 0.652, p 0.005) by (Actor) 

Connectedness.  H1 — fully supported. 

b. The GNSI Efficacity is not significantly determined (coeff 0.008, p 0.954) by 

Barriers to Innovation.  H2 — unsupported. 

c. There is no significant non-recursive relationship between (Actor) 

Connectedness and Barriers to Innovation (coeff 0.028, p 0.452).  H6 — 

unsupported. 

2. Regarding the Measurement Model 

a. The measurement model indicates that GNSI Efficacity is significantly measured 

by: 

i. Factor E2—Knowledge-based Innovation Capability (coeff 0.265, p 0.000); 

and  

ii. Factor E3—Standards and Regulatory Incentives (coeff 0.999, p 0.000).  H3 

— mainly supported. 

b. The measurement model indicates that (Actor) Connectedness is measured by: 
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i. Factor C2—Actor Intra-linkages (coeff 0.792, p 0.002).  H4 — partially 

supported. 

c. The measurement model indicates that Barriers to Innovation is measured by: 

i. Factor B4—Reduced Organisational Risks (coeff 0.999, p 0.000); 

ii. Factor B2—Unsophisticated Markets (coeff 0.775, p 0.000); and 

iii. Factor B3—Deficient Fiscal Policy (coeff 0.420, p 0.000).  H5 — mainly 

supported. 

 

The significant structural model findings suggest several indications with respect to policy 

craft and design for enhancing the GNSI Efficacity (i.e. effectiveness and efficiency in 

performance terms or capacity and capability in operational terms).  First, increasing the GNSI 

Efficacity requires increasing the coherence of Actor Connectedness.  In other words, ceteris 

paribus, Actor Intra-, Inter-linkages need to be strengthened in terms of increasing the density, 

distribution and symmetric directionality within, and between Actors.  Isolation of Actors from 

one another is inimical to a NSI that is functional at higher levels of performance in enabling 

innovativeness in the economy on the one hand; and on the other hand allowing the sources of 

intellectual assets to be linked with the productive system of the economy.  This finding 

supports theory as innovative capacity is related to the concept of centrality (Singh, 2005; Fox 

et al., 2013) and the ability of agents to create and maintain connections (Jansen, van den 

Bosch and Volbera, 2006).  The externalities of this Connectedness include better decision-

making capacity (Teece, 1996), enhanced organisational capital and increased marketisation of 

research outputs from KBIs (Etzkowitz, 1998).  The significant coefficient implies that a 1% 

increase in Actor Connectedness results in a 0.652% increase in the GNSI Efficacity.  Means by 

which this might be achieved are arrived at through addressing, with policy, the variables that 

Factors of Actor Connectedness influence such as those in table 4 above. 

 

Secondly, it is unexpected that the GNSI Efficacity is not significantly determined negatively 

(coeff 0.008, p 0.954) by Barriers to Innovation.  This, at first sight, is counter-intuitive.  

However, notwithstanding the statistical results, reflection on the NSI literature suggests that 

there may be threshold dynamics at work.  In other words, it may not matter how high or low 

Barriers to Innovation are in the NSI, they are unlikely to be significant in the absence of Actor 

Connectedness.  Barriers to Innovation appear not to matter to GNSI Efficacity when Actors are 

isolated for reasons such as: (i) threshold issues in that the Factor Barriers to Innovation in the 

GNSI are dominated by Skills ICT capability/capacity (influencing the variables access to ICT 

and ICT Capacity) (Bartels and Koria, 2012).  This factor influences Connectedness and 

therefore it is likely that Barriers to Innovation become structurally significant at a certain 

level of obstruction.  (ii) Barriers to Innovation are dynamic, and therefore it may be that 

institutional barriers on the one hand [e.g. learning deficiencies of Actors, absence of 

innovation transmission mechanisms and lack of innovation orientation by Actors (Oyelaran-

Oyeyinka and Gehl Sampath, 2006)]; and, on the other hand, organisational barriers (e.g. the 

absence of innovation as a core organisational value, isolated innovation responsibility, and 

risk averse behaviour) moderate the link between Barriers to Innovation and GNSI Efficacity. 
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Thirdly, the non-significant positive relationship between (Actor) Connectedness and Barriers 

to Innovation is counter intuitive, notwithstanding the statistical results.  The reason for this 

could be that Actors are relatively isolated from one another (Bartels and Koria, 2012).  This 

counter intuitive relation45 though insignificant demands explanation.  It could be that, before 

Barriers to Innovation become significant, a threshold level of Connectedness and interaction 

between Actors is requisite.  In this regard, Bernardes and da Motta e Albuquerque (2003, p. 

882) suggest the “there seems to be a threshold level in the scientific production (… in the 

neighbourhood of 150 scientific papers per million inhabitants), beyond which the efficiency in 

the use of scientific output by the technological sector increases; there is an inter-temporal 

dynamics of this threshold, as it changes in time”.  When intellectual capital or scientific 

production is seen as a function of Connectedness (Biglan, 1973) it is only after a threshold 

level of Connectedness is passed that Barriers to Innovation have a significant impact. 

 

The significant measurement model findings again suggest several indications with respect to 

policy craft and design regarding the fundamentals of the GNSI – Efficacity, Connectedness and 

Barriers to Innovation.  These indications concern using the relevant variables influenced by 

the significant Factors to benchmark, and thus monitor and manage longitudinally the GNSI.  

First, the variables influenced by the Factor E2—Knowledge-based Innovation Capability; and 

Factor E3—Standards and Regulatory Incentives (table 6) can be used with regards to GNSI 

Efficacity.  Secondly, the variables influenced by the Factor C2—Actor Intra-linkages (table 4) 

can be used for managing Actor Connectedness with respect to Intra-organisational coherence.  

Thirdly, the variables influenced by the Factor B4—Reduced Organisational Risks; the Factor 

B2—Unsophisticated Markets; and the Factor B3—Deficient Fiscal Policy (table 2) can be used 

to reduce Barriers to Innovation. 

 

With respect to developing countries and under conditions of resource constraints, from the 

relevant Factor and variable coefficients, policy makers have a view of where to apply limited 

fiscal and monetary resources as well as regulatory, standards and performance requirements 

and by how much an amount of input resource application to an independent policy variable 

will result in the output of the dependent policy variable.  Illustrative examples make the point.  

Regarding GNSI Efficacity, a 1% increase in the Factor E2—Knowledge-based Innovation 

Capability; and the Factor E3—Standards and Regulatory Incentives results respectively in a 

0.265% and 0.999% increase in GNSI Efficacity.  Again, how this might be achieved is through 

the variables influenced by the particular Factor (table 6).  Similarly, with respect to (Actor) 

Connectedness, a 1% increase in the Factor C2—Actor Intra-linkages generates a 0.792% 

increase in (Actor) Connectedness.  The variables influenced by the Factor (table 4) could be 

used to achieve this policy goal.  Concerning Barriers to Innovation a 1% increase in the Factor 

B2—Unsophisticated Markets increases the Barriers to Innovation by 0.775%.  The positive 

correlation implies that a 1% decrease in the Factor B2—Unsophisticated Markets decreases 

the Barriers to Innovation by 0.775%.  Likewise a 1% decrease in the Factor B3—Deficient 

Fiscal Policy decreases the Barriers to Innovation by 0.420%; and a 1% decrease in the Factor 

                                                 
45 As Connectedness increases so too Barriers to Innovation and vice versa. 
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B4—Reduced Organisational Risks results in a 0.999% decrease in Barriers to Innovation.  The 

variables influenced by Factors in table 2 assist in achieving this policy outcome. 

7.1  Implications and Contribution 

The implications of our paper are several.  First, the complexity of NSI can be modeled 

successfully using SEM for insights and therefore policy design.  Secondly, the measurement 

model Factors can be used to bench-mark GNSI Efficacity, (Actor) Connectedness, and Barriers 

to Innovation.  Thirdly, GNSI Efficacity is structurally determined solely by (Actor) 

Connectedness at least until a threshold level of Barriers to Innovation interfere with NSI 

effectiveness and efficiency.  Fourthly, in developing countries, ensuring that NSI Actors are 

well-connected is the most important policy goal for increasing innovativeness in the economy; 

and conversely, the lack of NSI (Actor) Connectedness appears the most significant barrier to 

innovation and innovativeness — the analogy being the inutility of a disconnected telephone. 

 

The contributions of this paper to theory and empirics requires reference to the seminal work 

of Leydesdorff and Etzkowitz (1996) further elaborated in Etzkowitz & Leydesdorff (2000) 

with respect to the political economy of the innovation-knowledge infrastructure and the 

knowledge-based economy (Leydesdorff, 2012).  As mentioned previously the traditional TH 

Model incorporates formally only three Actors namely Government, University and Industry.  

This framework developed in the context of industrialised countries needs adjustment in the 

developing country context.  Hence, we advance the TH4 Model in which Arbitrageurs as 

another distinct Actor and diffused ICT are incorporated.  Thus the major contribution of our 

paper lies firstly in this advance and employing SEM to model successfully the interactively 

complex NSI of a developing country46.  Secondly, the fit of our model to the data indicates that 

the model serves well to inform, configure and calibrate policy instruments [incentives (fiscal, 

monetary, regulatory, performance requirements and standards setting)] in order to improve 

NSI Efficacity.  Thirdly, there is merit in the model application to other NSI. 

 

8. Conclusions 

Our paper has served to demonstrate reliably that the dynamic complexity of NSI can be 

successfully modeled using SEM to elucidate the determinants of fundamental constructs of 

NSI in terms of efficacity, linkages, and barriers to innovation.  The measurement model 

enables policy makers concerned with innovation to view the dynamics of innovation 

systemically and to have valid and reliable variables that can be used to indicate the 

performance of the NSI.  The structural model permits crucial insights: (i) Connectedness 

through Intra- and Inter-linkages of the core Actors is key to efficacious performance of the 

NSI; (ii) threshold dynamics appear to be at work in the NSI, in that Barriers to Innovation may 

become significant only after a certain level of obstruction with respect to Actor 

Connectedness; (iii) mapping and measuring the system of innovation is a primary necessity 

for producing evidence-based policy.  The robustness of the SEM allows it to be applied to 

other NSI. 

 

                                                 
46 Behboudi, Jalili and Mousakhani (2011) present a SEM of the commercialisation of research in Iran. 
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Issues for further research concern: (i) performing a comparative SEM analysis for each Actor 

for an indication of structural similarities; (ii) the application of our methodology to NSI in 

other economies47; and (iii) applying the methodological approach to the vertical and 

horizontal nested levels of systems of innovation. 

 

                                                 
47 To this end the Authors are currently analysing data from the Kenya NSI, 
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