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ABSTRACT 

 

Is firm growth more persistent for young or old firms? Theory gives us no clear answer, and 

previous empirical investigations have been hampered by a lack of detailed data on firm age, as 

well as a non-representative coverage of young firms. We overcome these shortcomings using a 

rich dataset on all limited liability firms in Sweden during 1997-2010, covering firms of all ages 

and information on registered start year. We find that sales growth for new ventures is 

characterized by positive autocorrelation, whereas it turns increasingly negative for older firms. It 

thus seems that the growth paths of older firms are buffeted around by environmental turbulence, 

and that older firms have challenges in adapting their strategies to changing market conditions, 

whereas new firms need to grow in order to achieve a minimum efficient scale.   

INTRODUCTION 

     A key indicator of performance of new ventures is their post-entry growth (Parker, 2004), 

although the characteristics of new firm growth remain poorly understood (McKelvie and 

Wiklund, 2010). Building on previous entrepreneurship research into the growth paths of new 

ventures (Delmar et al., 2003; Coad et al., 2013a), we investigate how growth paths are moderated 

by firm age. A number of studies have indicated that firm age is an important determinant of firm 

growth, with younger firms growing faster than older firms (Haltiwanger et al., 2013).  

     However, we still lack knowledge on how firm age is influencing firm growth rates over time, 

and theories of how firm ageing processes influence growth paths give us no clear guidance. On 

the one hand, we may expect that young firms face a liability of newness (Stinchcombe, 1965). 

Translated to growth persistence, older firms may have more experience and foresight when it 

comes to their business environment, and can therefore be expected to have smoother growth 

paths with fewer bumps and surprises (that is – more positive autocorrelation in their growth 

rates). Learning-by-doing models (Arrow, 1962; Sorensen and Stuart, 2000; Chang et al., 2002) 

also suggest that older firms may benefit from their greater business experience, and therefore 

have a higher degree of growth persistence than younger firms. 

     On the other hand, older firms might suffer from a „liability of obsolescence‟ and also a 

„liability of senescence‟ (Barron et al., 1994). This implies lower growth persistence for old firms, 

since they have problems adapting their strategies to changing business conditions as well as 

increasing inertia and organizational rigidities. Young firms might also seek to achieve Minimum 



 

 

Efficient Scale (MES) as they struggle to overcome their „liability of newness‟ and achieve 

economies of scale (Lotti et al., 2009). However, once they have survived the first few years and 

have settled into their new organizational routines, growth will lose its momentum. 

     There is little empirical work on how growth autocorrelation varies over firm age. This can be 

explained by two data-related issues. First, there is limited availability of data on firm age:  Headd 

and Kirchhoff, (2009, p548) recently commented on “the dearth of information by business age” 

and explained that “[s]imply stated, industrial organization and small business researchers are 

deprived of firm-age data." Second, it is very difficult to obtain representative data on very young 

firms, since they are often only included in the dataset when they exceed a certain threshold size 

(Coad et al., 2013b). We overcome these problems by using a data-set with information from the 

Swedish Patent and Registration Office (PRV) on all limited liability firms during 1997-2010. The 

data cover all young firms, and also include information on the registered start year. While 

previous entrepreneurship research has had difficulties in obtaining data on the early years of new 

ventures (Bamford et al., 2004 Table 1), we are thus in a unique position to look at growth paths 

of firms of all ages.   

    Firm growth rates tend to follow the Laplace distribution (Stanley et al. 1996; Bottazzi and 

Secchi, 2003; Bottazzi et al. 2011), with most firms not growing while a few high-growth firms 

grow very fast. This makes OLS estimation unattractive since it is of little interest to estimate the 

average effect of firm age on growth persistence when the median and the average firm have 

marginal growth rates. Following Fotopoulos and Louri (2004), Coad and Rao (2008), and 

Reichstein et al. (2010), we instead estimate quantile regression models to take into account that 

the relationship between firm age and growth persistence might differ across the growth rate 

distribution.  

     Our results indicate that young firms are characterized by positive growth autocorrelation, 

whereas the autocorrelation coefficient turns increasingly negative for older firms. Nascent 

ventures, therefore, enjoy positive persistence – a sort of „success-breeds-success‟ dynamic – 

which lasts for fewer than ten years, until persistence becomes negligible for older firms. This 

finding can be related to the struggle for new ventures to grow and overcome the vulnerabilities 

related to their initial small scale. We can thus reject the hypothesis that older firms should have a 

high degree of growth persistence due to learning effects. Instead our results support theories 

arguing that older firms might have problems in adapting their strategies to changing market 

conditions, whereas new firms need to grow in order to achieve a minimum efficient scale.   

 

THEORETICAL BACKGROUND AND PREVIOUS STUDIES 

 

         Early theoretical work on firm dynamics focused almost exclusively on how firm size was 

related to firm growth, whereas firm age received little attention. One the most studied hypothesis 

in the literature is whether Gibrat‟s (1931) law of proportionate effects holds, i.e., whether firm 

growth is independent of firm size (for overviews, see e.g., Sutton 1997; Caves 1998; Lotti et al. 

2003). But more recently researchers have also started to include firm age as an explanatory 

variable in firm growth analysis. The results tend to indicate that younger firms in general grow 

faster than older firms (Coad, 2009). Daunfeldt et al. (2014) also indicated that high-growth firms 

in general were younger than other firms, irrespective of whether employment, sales, labor 

productivity or value added was used as growth indicator. Haltiwanger et al. (2013) even indicated 

that the relationship between firm size and firm growth disappears when controlling for firm age, 

suggesting that causality runs from age to growth and not from size to growth.     



 

 

 

    However, we still lack knowledge on how firm age influences the growth process of firms. 

Young firms might, for example, have higher growth rates but also more erratic growth paths than 

older firms. Existing theories of how firm ageing processes influence growth paths give us no 

clear guidance. One the one hand, we may expect that young firms face a liability of newness 

(Stinchcombe, 1965). Translated to growth persistence, older firms may have more experience and 

foresight when it comes to their business environment, which lead to longer planning horizons, 

and can therefore be expected to have smoother growth paths with fewer bumps and surprises (that 

is – more positive autocorrelation in their growth rates). Learning-by-doing models (Arrow, 1962; 

Sorensen and Stuart, 2000; Chang et al., 2002) also suggest that older firms may benefit from their 

greater business experience, and therefore have a higher degree of growth persistence than 

younger firms. 

     On the other hand, older firms might suffer from a „liability of obsolescence‟ and also a 

„liability of senescence‟ (Barron et al., 1994). This implies lower growth persistence for old firms, 

since they have problems adapting their strategies to changing business conditions as well as 

increasing inertia and organizational rigidities. Young firms might also seek to achieve Minimum 

Efficient Scale (MES) as they struggle to overcome their „liability of newness‟ and achieve 

economies of scale (Lotti et al., 2009). However, once they have survived the first few years and 

have settled into their new organizational routines, growth will lose its momentum. 

A number of studies have previously analyzed the persistence of firm growth. Early studies (Ijiri 

and Simon 1967; Singh and Whittington 1975), using mostly data on large manufacturing firms, 

indicated that the process of firm growth was characterized by positive autocorrelation. Results 

from recent studies are more ambiguous, with some finding that firm growth is characterized by 

positive autocorrelation rates (Dunne and Hughes, 1994) and others negative autocorrelation 

(Goddard et al., 2002a). Coad (2007), Coad and Hölzl (2009) and Capasso et al. (2013) have 

attempted to untangle the role played by firm size using quantile regression techniques. The results 

from these studies indicate that autocorrelation in general is negative for small firms, whereas 

large firms show positive or no persistence in growth rates. The highest negative autocorrelation 

was found among the 10% fastest growing firms, making sustained high growth rates a very 

unlikely growth process. This result is also supported by Parker et al (2010), Daunfeldt and 

Halvarsson (2012) and Hölzl (2014), who have found that high-growth firms are essentially one-

hit wonders. 

     However, very few studies have previously investigated whether growth autocorrelation is 

related to firm age. One exception is Coad et al. (2013b), who analyzed whether autocorrelation 

coefficients changed when firms grow older using a panel of Spanish manufacturing firms during 

1998-2006. Their results indicated that sales growth autocorrelation was positive for firms that 

were less than 5 years old, but then turned and stayed negative for older firms. However, these 

authors caution that survivor bias and selection bias could be driving these results, such that young 

firms with relatively high growth rates were over-represented in their data. 

 

 

DATA 

 

    The main challenges when investigating the effects of firm age are data availability, and the 

necessity of a comprehensive representation of young firms. In order to overcome these challenges 

we chose to use the PAR-dataset, which comprises all Swedish limited liability firms during 1997-



 

 

2010. Swedish administrative data-sets have previous been shown to be an unusually rich 

information source for entrepreneurship research (e.g. Davidsson et al., 2009; Wennberg et al., 

2010; Folta et al., 2010).  

 

     In Sweden, all limited liability firms are required by law to submit an annual report to the 

Swedish patent and registration office (PRV), and PAR, a Swedish consulting firm, gathers this 

information from PRV. The dataset thus covers all limited liability firms, which means that young 

firms are not under-represented as in many other studies (Coad et al., 2013b). Another attractive 

feature of the dataset is that it includes information on the registered start year, with the oldest firm 

being registered already in 1877. In addition, the data include all variables that can be found in the 

annual reports, e.g., number of employees, sales, profits, and liquidity.  

 

     We restrict our analysis to active firms, which we define as firms that have at least one 

employee and positive sales.  

     To measure firm growth we use the log-difference of firm size, i.e. 

𝑔𝑟𝑜𝑤𝑡ℎ𝑖,𝑡 = log  (𝑠𝑖𝑧𝑒𝑖 ,𝑡) − log(𝑠𝑖𝑧𝑒𝑖 ,𝑡−1), 

     where firm size is measured using sales. Employment and sales are the two growth indicators 

that are most commonly used within the firm growth literature (Delmar, 1997). Although sales and 

employment can be thought of as output and input variables in the production function, they are 

closely correlated. The correlation for all years between sales and employment in our data is 0.84, 

which is higher than in previous studies that have found that sales and employment growth are 

only modest correlated (Shepherd and Wiklund, 2009), presumably because of our rich coverage 

of small young firms. We have also performed all analyses with employment as growth indicator, 

and the results are very similar and available upon request. This indicates that the results are not 

particular sensitive to which of these growth indicators are chosen, confirming findings from 

Daunfeldt et al. (2014).   

     Our main variable of interest is firm age, which is defined as the observation year minus the 

registered start year. The extensive information of firm age is unique, and should enable us to 

accurately assess the age effect on growth persistence. The age distribution of firms in 2010 is 

presented in Figure 1, showing that most firms are young. This is expected since we know that 

young firms have high exit rates (Lotti et al., 2003). Except for the hump around age 20 and 40 the 

distribution seems to display exponential decay (disregarding the discreteness of age). Compared 

to other studies on firm age we do not need to work with truncated or censored age distributions 

due to our complete coverage.  

     We find that the mean and standard deviation of age are both 14, which also corresponds to the 

mean variance relationship for exponentially distributed variables. The oldest firms in the 

population are 113 years old and amount to 110 firms, which mean that we cannot completely rule 

out right-censoring. But given its small extent we choose to dismiss right-censoring issues in the 

subsequent analysis. 

     Figure 2 shows the kernel density plots for annual sales growth for different age groups rates 

during 2010. Plotted on a semi-log axis the growth-rate distribution exhibits the typical tent shape. 

We also choose to apply a censoring for  𝑔𝑟𝑜𝑤𝑡ℎ𝑖 ,𝑡  > 2 with the probability mass collected in 

±2. A striking feature of the figure is the upward-curling tails that would indicate, a slightly 

heavier distribution than the Laplace, which has longer tails than the Gaussian distribution. 

Moreover, the distribution of the youngest firms (age < 5 years) is different from that of older 

firms with more probability mass located at larger than zero growth rates. This indicates that 



 

 

younger firms are more likely than older firms to experience fast sales growth rates, confirming 

results by Coad et al. (2013b). However, in contrast to the findings presented by Coad et al. 

(2013b), the numbers of young firms in the middle of the growth rate distribution (i.e., with close 

to zero growth rates) are also a lot fewer than what can be found in the distributions of older firms. 

This implies that younger firms also are less likely to experience marginal growth rates compared 

to older firms. Finally, the left tail of the growth rate distribution seems roughly invariant to firm 

age, suggesting that younger firms have almost the same likelihood of facing fast rates of decline 

as older firms.  

     The higher dispersion in growth rates among the very youngest firms can also be seen in Table 

1 that shows some descriptive statistics for the sales-growth variable. Firms with age less than 5 

years show higher average growth rates and higher standard deviation than older age categories. 

 

     To get a first idea over the relationship between intertemporal growth rates, we look at the 

bivariate density of sales growth of consecutive annual growth rates. Figure 3 is a representation 

of the bivariate density of sales growth in period 𝑡 and 𝑡 − 1, and is in itself an important 

contribution to empirical work on growth autocorrelation. The frequency is projected into the 

plane by the aid of a contour plot, illustrated through 20 shades of grey. The darker the color is, 

the higher is the frequency of firms with the intertemporal pair of sales growth rates. The bivariate 

frequency is scaled logarithmically, which means that the number of firms within a shade 

corresponds to the exponent of that log-frequency. The bivariate distribution found in the figure is 

unimodal with the black center represents the many firms that do not grow, nor did grow in the 

previous period. Looking at the four different quadrants of sales growth contained in the plane 

 −2,2 × (−2,2), every non-white shade indicates that some number of firms are present. For 

example, firms in the upper right quadrant  0,2 ×  0,2  experienced positive growth rates in both 

2010 and 2009. The white spot in the top right corner suggests that no firms did experience 

consecutive growth rates at that rate. 

     In a similar way we have also constructed contour plots for the different age categories used 

above (Figure 4). While plot over all firms looks rather symmetric, the bivariate distribution of 

consecutive growth rates for different age categories are more heterogeneous. Looking at the 

contour plot for the youngest firms, we see a slight tendency that firms with negative growth rates 

in 2009 experienced positive growth rates in 2010. The same tendency can as easily be 

distinguished for the older firms. Perhaps most strikingly is the bottom right contourplot in Figure 

4 that contains the oldest firms. These firms experience considerably less fluctuation in their 

growth rates over time, while their growth rates had roughly the same standard deviation in 2010 

(Table 1) as for the age group 20-40 years.  

METHOD 

    This paper follows in the tradition of modeling firm growth as a stochastic process. At any point 

in time, even if there are a multitude of different factors (internal and external) affecting the 

process of growth for the individual firm, the stochastic framework regards those factors as 

approximately random at the aggregate level. While some factors work to decrease growth, others 

cause it to increase. In the cross-sectional analysis of firm growth the combined effect of these 

forces amount to a probability distribution that describes the dynamic of firm growth (Singh and 

Whittington, 1975). Considering the probability distribution of growth rates, autocorrelation refers 

to a type of intra-distributional movement, where the position of past growth affects the position 

of future growth rates. 

     To model the dynamics of firm growth, we consider the following data generating process: 



 

 

𝑔𝑟𝑜𝑤𝑡ℎ𝑖 ,𝑡 =  1 − 𝛽 𝛼𝑖 +  𝛽 − 1 𝑠𝑖𝑧𝑒𝑖 ,𝑡−1 +  𝜃𝑠𝑔𝑟𝑜𝑤𝑡ℎ𝑖,𝑡−𝑠
𝑘
𝑠=1 + 𝜖𝑖,𝑡 ,         (1) 

     where the parameter 𝛼𝑖  captures time-invariant heterogeneous firm effects and 𝛿𝑡  time effects. 

The disturbance term 𝜖𝑖,𝑡  is assumed to be independent and identically distributed. To analyze 

persistence we are interested in 𝜃, which refers to the effect on current growth from lagged growth 

rates. The interpretation of 𝜃 is as follows; the percentage change of firm growth in t from a 

percent change in growth 𝑡 − 1. For example, if 𝜃=0.2, then a 10 percent increase in growth in 

time 𝑡 − 1 would translate into an increase of 2 percent in growth in time 𝑡. Should 𝜃 = −0.2, the 

effect on growth would instead be a decrease of 2 percent in time 𝑡. The model in (1) is closely 

related to Gibrat's Law of Proportionate Effect (LPE), which states that growth rates in time 𝑡 are 

independent of size in the previous period 𝑡 − 1. This happens when 𝛽 = 1, where 𝛽 refers to the 

effect on growth from lagged size, and 𝛼𝑖 = 0. If 𝛽 > 1, growth becomes explosive, where firms 

grow faster as they become larger. Evidently this scenario can only be temporary and does not 

result in a steady state distribution for firm size. If 𝛽 < 1, size regresses to the mean, with smaller 

firms growing faster than large firms. In the Gibrat literature, growth autocorrelation is usually 

considered only in so far as it violates the LPE. If persistence is present in the form of state 

dependence, growth can be said to either encourage or discourage growth, eventually resulting in a 

dependence between firm size and growth (Chesher, 1979). 

    Equation (1) is used in Coad and Hölzl (2009) and Coad (2007) to study growth autocorrelation. 

Here we go one step further and derive (1) from the properties of 𝑠𝑖𝑧𝑒𝑖 ,𝑡 . Essentially (1) coincides 

with the Augmented Dickey Fuller test, which is known to follow from imposing an AR(2) 

structure on 𝑠𝑖𝑧𝑒𝑖,𝑡 , hence  

𝑠𝑖𝑧𝑒𝑖,𝑡 = 𝜙0 + 𝜙1𝑠𝑖𝑧𝑒𝑖,𝑡−1 + 𝜙2𝑠𝑖𝑧𝑒𝑖,𝑡−2 + 𝜖𝑖,𝑡 .   (2) 

     After subtracting 𝑠𝑖𝑧𝑒i,t−1 from both sides, and thereafter adding zero 𝜙2(𝑠𝑖𝑧𝑒𝑖,𝑡−1 − 𝑠𝑖𝑧𝑒𝑖 ,𝑡−1) 

to the right hand side of (2), the expression becomes 

𝑔𝑟𝑜𝑤𝑡ℎ𝑖,𝑡 = 𝜙0 +  𝜙1 + 𝜙2 − 1 𝑠𝑖𝑧𝑒𝑖,𝑡−1 − 𝜙2𝑔𝑟𝑜𝑤𝑡ℎ𝑖 ,𝑡−1 + 𝜖𝑖,𝑡 ,  (3) 

    which is equivalent to (1) for 𝑘 = 1. By deriving the model from an AR(2) process of 𝑠𝑖𝑧𝑒𝑖,𝑡 , 

the parameters 𝛽 and 𝜃 in (1) can be related to 𝜙1 and 𝜙2 in (3) through, 𝛽 = 𝜙1 + 𝜙2, and 

𝜃 = −𝜙2. Thus, it follows from this simple exercise, given the structure of size in (2), that growth 

persistence 𝜃 in the augmented Dickey-Fuller test, for 𝑘 = 1, are implied from the sign of the 

second lag of firm size. 

    In order to estimate equation (3), we apply a quantile regression estimator. We do this for three 

reasons. First, there is a vast literature that analyses the fastest growing firms in the economy. 

Evidence suggests that these firms display a number of unique characteristics compared to other 

more slowly growing firms. There are therefore good reasons to expect that the persistence also 

differs regarding the fastest growing firms. A number of studies (Coad and Hölzl, 2009; Daunfeldt 

and Halvarsson, 2014) have also found that these firms display stronger negative persistence than 

other firms, which would imply that they often experienced strong negative growth rates in 

previous periods. Second, we know from previous studies that most firms do not grow from one 

year to another, which is also visible in Figures 2-4. This means that methods based on OLS 

estimation are inappropriate since it is of little interest to estimate the average effect of firm age on 

growth persistence when the average firm has marginal growth rates. Methods that focus on the 

conditional mean of the growth rate distribution thus miss the more complex dynamics that might 

be present in other parts of the growth rate distribution. Third, given the characteristic non-

Gaussian „tent-shape‟ of the growth rates distribution, methods based on least squares are heavily 

dependent upon the normality assumption of the residuals. For leptokurtic distributions, least 



 

 

squares methods perform less well. Median regression or quantile regression, on the other hand, 

are especially well-suited to model disturbances that are Laplace-distributed, which is closely 

related to the observed growth-rate distribution. Compared to most previous studies that have 

applied quantile regression techniques, we use clustered standard errors (which are now available 

in standard computer packages) in all estimations to ensure against excess within-autocorrelation 

and heteroskedasticity in the error term.  

RESULTS 

   In this section we first present the results from estimating equation (3) for the complete age 

distribution of firms. We then partition the sample of firms into four different age categories from 

young to old. To increase the number of observations in the category containing the oldest firms, 

for our regressions we merge firms with age 19 – 40 year with firms that have existed more than 

40 years.  

     The rate of growth autocorrelation becomes increasingly negative for the upper quantiles when 

all firms are included in the model (Table 2). The trend goes from 0 at the lowest (q=0.1) quantile 

to -0.111 for the 10 percent fastest growing firms at the 90% quantile. Since we estimate a double 

log model the coefficients can be interpreted as elasticities, measuring the effect of a 1 percent 

change of sales growth in period t-1 on sales growth in period t. The result for the 90% quantile 

thus indicates that a 1% change of sales growth in period t-1 is associated with 0.111% decrease in 

sales growth in period t. Hence, given the increasingly negative effects found for higher quantiles, 

the faster a firm grows in 𝑡 the more negatively does it correlate with growth rates in 𝑡 − 1.  

    Gibrat‟s (1931) prediction that size is independent of growth rates can also be rejected. We 

observe increasing growth rates from a larger size for firms in the median quantile, and below. 

Since most of these firms by definition experience negative growth rates in time 𝑡, having a large 

size in 𝑡 − 1 is associated with having a less negative growth rate in 𝑡. Thus, even if Gibrat‟s law 

is rejected from  𝜙1 + 𝜙2 − 1 > 0, the positive effect from 𝐿. log(𝑠𝑖𝑧𝑒) is compatible with size 

mean reversion. As regards firm age it seems to exert a cushioning effect for the firms with lowest 

negative growth rates (q=0.1). The effect is symmetrical for higher quantiles, where a higher age 

translates into a slower growth rate. For the fastest growing firms, an additional 1 year of age 

results in -0.3% lower growth rates (𝑠𝑖𝑧𝑒𝑖 ,𝑡/𝑠𝑖𝑧𝑒𝑖,𝑡−1) on average, evaluated for a firm with the 

average age of 14 years (−0.042 ∗ 1/14 ∗ 100 = −0.3 ). 

     Next we present the results for the different age categories (Tables 3-6). The results indicate 

that the autocorrelation coefficient for young firms is closer to zero than it is for older firms. Firms 

that are younger than 5 years show no significant autocorrelation coefficients for most of the 

growth quantiles, while the fastest growing young firms have a negative and significant 

autocorrelation coefficient. The size of the effect is, however, much smaller for young firms 

compared to older firms. According to the results, a 1% increase in sales growth in period t-1 will 

lead to a -0.04% decrease in sales growth in period t for the young fast growing firms. The 

corresponding figures for older firms are also negative, but the size of the estimated coefficients is 

more than twice as high. For example, a 1% sales growth increase in period t-1 for firms that are 

older than 19 years will lead to a decrease in growth rates for these firms with -0.133%.    

     Finally, we continue our investigation by plotting the evolution of sales growth for each age 

(i.e. 40 datapoints for ages 1-40) and growth quantile (Figure 5). In contrast to the results 

presented in Tables 2-6, these results are based on estimations of equation (3) where standard 

errors are not clustered. The results presented in Figure 5 show that growth autocorrelation is 

positive for start-ups for all growth quantiles, but turns negative only after a few years. The trend 



 

 

is also more negative for firms with higher growth rates and stays negative for quantile 0.75 and 

0.90, whereas it is not significantly different from zero in the other quantiles when the firm gets 

older.   

SUMMARY AND CONCLUSIONS 

     Firm age has been argued to be one of the most important determinants of firm growth. 

However, we still know very little about how firm age influences growth over time. The lack of 

studies can most likely be explained by the absence of data on firm age, and the under-

representation of young firms in many available longitudinal datasets. We overcome these 

shortcomings by using a dataset that includes information on the age (that is, years since 

registration) of all Swedish limited liability firms of all sizes. 

     Our results indicate that young firms are characterized by positive autocorrelation in growth 

rates, suggesting that growth in one period is positively related to growth in the next. However, 

sales growth autocorrelation turns increasingly negative for older firms. We thus found no support 

for the hypothesis that older firms should have a high degree of growth persistence due to learning 

effects. Instead our results support theories arguing that older firms might have problems in 

adapting their strategies to changing market conditions, whereas new firms need to grow in order 

to achieve a minimum efficient scale.   

     Our analysis therefore shows that the volatility of growth does not decrease with age, but rather 

that it increases. Firms do not learn how to smooth their growth over time – in fact, they appear to 

do worse in smoothing their growth, even since a relatively early age. This need not necessarily be 

interpreted, however, as evidence that firms become less able to evaluate the evolution of their 

environment. As time goes by, the environment in which firms operate seems to become more 

volatile. Firms are not in complete control of their environments. Our speculative interpretation is 

that firms learn how to deal with uncertainty as they age. They learn how to survive and thrive 

even in increasingly turbulent environments, which might throw younger firms off balance. The 

analogy would be similar to the behaviour of a surfer who stays afloat on a surfboard even as the 

sea gets choppier. The skilled surfer can stay afloat even on increasingly turbulent waves; and the 

aging firm is able to conduct its business even in increasingly volatile situations. 

CONTACT: Alex Coad; A.Coad@sussex.ac.uk; (T) +44 1273877128 ; SPRU, Jubilee Building 

379, Univ. Sussex, BN1 9SL, Falmer, UK.  
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Figure 1. The age distribution of firms in 2010 

 

 
Figure 2. Kernel density plot of sales growth in 2010 

 

  



 

 

 

Table 1. Description of sales growth by age categories 

Age Obs. Mean St.dev Min Max 

0 – 5 year 39085 0.110 0.959 -8.793 9.574 

5 – 10 year 39933 -0.016 0.834 -9.2573 8.795 

10 – 20 year 55185 -0.030 0.792 -11.589 13.058 

20 – 40 year 49139 -0.035 0.748 -9.958 9.132 

+40 year 13301 -0.020 0.702 -10.356 7.249 

All firms 196643 0.000 0.822 -11.589 13.058 

 

 

 

 
Figure 3. Contour plot for pairs of consecutive growth rates (i.e. growth(t-1) and growth(t)) 

in 2010 (all firms) 

 

 

 



 

 

 
Figure 4.  Contour plots for pairs of consecutive growth rates in 2010, for five age 

groups. 

 

 

 

 Table 2. Regression estimation of equation (3) for all firms in 2010 

All firms (1) (2) (3) (4) (5) 

Sales Growth (2010) 𝑞 = 0.1 𝑞 = 0.25 𝑞 = 0.50 𝑞 = 0.75 𝑞 = 0.90 

𝐿. 𝑔𝑟𝑜𝑤𝑡ℎ 0.010 -0.020*** -0.037*** -0.079*** -0.111*** 

 

(0.008) (0.003) (0.004) (0.005) (0.006) 

𝐿. log(𝑠𝑖𝑧𝑒) 0.086*** 0.032*** 0.004*** -0.026*** -0.083*** 

 

(0.002) (0.001) (0.000) (0.001) (0.002) 

𝐿. log(𝑎𝑔𝑒) 0.015*** -0.002 -0.011*** -0.032*** -0.042*** 

 

(0.004) (0.002) (0.001) (0.002) (0.004) 

Constant -0.750*** -0.567*** -0.343*** -0.032 0.120*** 

 

(0.031) (0.029) (0.019) (0.029) (0.017) 

      Observations 171 276 171 276 171 276 171 276 171 276 

R2 0.004 0.001 0.006 0.011 0.010 

Pseudo R2 0.040 0.016 0.005 0.021 0.087 

Standard errors in parentheses*** p<0.01, ** p<0.05, * p<0.10 



 

 

 

 

Table 3. Regression estimation of equation (3) for firms with < 5 years of age 

in 2010 

Age < 5  (1) (2) (3) (4) (5) 

Sales Growth (2010) 𝑞 = 0.1 𝑞 = 0.25 𝑞 = 0.50 𝑞 = 0.75 𝑞 = 0.90 

𝐿. 𝑔𝑟𝑜𝑤𝑡ℎ 0.035*** 0.012 0.004 -0.014 -0.040** 

 

(0.012) (0.010) (0.007) (0.010) (0.020) 

𝐿. log(𝑠𝑖𝑧𝑒) 0.102*** 0.031*** -0.009*** -0.064*** -0.149*** 

 

(0.006) (0.003) (0.002) (0.005) (0.007) 

𝐿. log(𝑎𝑔𝑒) -0.042** -0.029** -0.020** -0.071*** -0.105*** 

 

(0.021) (0.013) (0.008) (0.014) (0.026) 

Constant -0.852*** -0.549*** -0.341*** -0.069* 0.310*** 

 

(0.080) (0.040) (0.100) (0.041) (0.059) 

      Observations 18 999 18 999 18 999 18 999 18 999 

R2 0.005 0.003 0.004 0.012 0.013 

Pseudo R2 0.042 0.012 0.008 0.037 0.106 

Standard errors in parentheses*** p<0.01, ** p<0.05, * p<0.10 

 

 

 

 

Table 4. Regression estimation of equation (3) for firms with 4 < Age <10 

years in 2010 

4 < Age <10  (1) (2) (3) (4) (5) 

Sales Growth (2010) 𝑞 = 0.1 𝑞 = 0.25 𝑞 = 0.50 𝑞 = 0.75 𝑞 = 0.90 

𝐿. 𝑔𝑟𝑜𝑤𝑡ℎ 0.034** -0.012 -0.039*** -0.084*** -0.126*** 

 

(0.016) (0.008) (0.007) (0.010) (0.011) 

𝐿. log(𝑠𝑖𝑧𝑒) 0.104*** 0.034*** 0.002** -0.038*** -0.118*** 

 

(0.005) (0.002) (0.001) (0.002) (0.004) 

𝐿. log(𝑎𝑔𝑒) 0.053 0.002 -0.007 -0.040*** -0.044** 

 

(0.033) (0.012) (0.005) (0.011) (0.019) 

Constant -1.288*** -0.869*** 0.085*** 0.127*** 0.087** 

 

(0.088) (0.035) (0.011) (0.034) (0.040) 

      Observations 38 067 38 067 38 067 38 067 38 067 

R2 0.007 0.004 0.007 0.015 0.015 

Pseudo R2 0.036 0.014 0.005 0.029 0.100 

Standard errors in parentheses*** p<0.01, ** p<0.05, * p<0.10 

 



 

 

 

Table 5. Regression estimation of equation (3) for firms with 9 < Age <20 

years in 2010 

9  < Age < 20 (1) (2) (3) (4) (5) 

Sales Growth (2010) 𝑞 = 0.1 𝑞 = 0.25 𝑞 = 0.50 𝑞 = 0.75 𝑞 = 0.90 

𝐿. 𝑔𝑟𝑜𝑤𝑡ℎ -0.007 -0.035*** -0.053*** -0.100*** -0.133*** 

 

(0.013) (0.006) (0.007) (0.009) (0.012) 

𝐿. log(𝑠𝑖𝑧𝑒) 0.091*** 0.033*** 0.004*** -0.028*** -0.086*** 

 

(0.003) (0.001) (0.001) (0.001) (0.002) 

𝐿. log(𝑎𝑔𝑒) 0.054** -0.002 -0.018*** -0.050*** -0.067*** 

 

(0.025) (0.009) (0.004) (0.007) (0.016) 

Constant -1.178*** -0.840*** -0.695*** -0.509*** -0.251*** 

 

(0.067) (0.037) (0.025) (0.017) (0.036) 

      Observations 53 675 53 675 53 675 53 675 53 675 

R2 0.004 0.000 0.010 0.016 0.013 

Pseudo R2 0.039 0.017 0.005 0.026 0.090 

Standard errors in parentheses*** p<0.01, ** p<0.05, * p<0.10 

 

 

 

 

 

Table 6. Regression estimation of equation (3) for firms with Age>19 years in 

2010 

19 < Age (1) (2) (3) (4) (5) 

Sales Growth (2010) 𝑞 = 0.1 𝑞 = 0.25 𝑞 = 0.50 𝑞 = 0.75 𝑞 = 0.90 

𝐿. 𝑔𝑟𝑜𝑤𝑡ℎ -0.012 -0.033*** -0.060*** -0.102*** -0.129*** 

 

(0.014) (0.006) (0.007) (0.008) (0.010) 

𝐿. log(𝑠𝑖𝑧𝑒) 0.078*** 0.030*** 0.005*** -0.018*** -0.065*** 

 

(0.003) (0.001) (0.001) (0.001) (0.002) 

𝐿. log(𝑎𝑔𝑒) -0.025* -0.001 -0.002 0.004 0.035*** 

 

(0.014) (0.004) (0.002) (0.003) (0.008) 

Constant 0.185*** 0.031 -0.023 -0.106*** -0.285*** 

 

(0.059) (0.029) (0.020) (0.028) (0.044) 

      Observations 60 535 60 535 60 535 60 535 60 535 

R2 0.001 0.000 0.008 0.010 0.006 

Pseudo R2 0.049 0.021 0.007 0.026 0.082 

Standard errors in parentheses*** p<0.01, ** p<0.05, * p<0.10 

 



 

 

 

AGE REGRESSIONS 

 
 

Figure 5. Quantile regression for age 1- 40. Each datapoint corresponds to an 

estimate of 𝜙2 from equation (3) for each year. Hence, each of the 5 plots in 

this Figure present 40 estimated coefficients (and standard errors) obtained 

from 40 regressions, one for each year. 


